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DISCLAIMER

This document consists almost all the problems expressed through the likes of Practice
Problem Sets, Flash Quizzes, Quizzes and Programming Assignments, during the span of
the CS1110 - Discrete Mathematics course in the Spring 2025 semester at Ashoka
University.

Although the course was designed to be a gateway course, i.e., intended to lay the basic math-
ematical foundations of an undergraduate CS major, nevertheless a significant programming
component was also incorporated in the syllabus unlike any traditional undergraduate course
on Discrete Mathematics. The goal was to cultivate and strengthen a proper programming
attitude amongst the students. C progarmming language was used as the primary language
and all relevant code files can be found at this GitHub repo.

Further the ultimate section of this document, named Extras, contains some sort of hints/-
solutions to seleted questions from the indicated Problem Sets. The answers are not
crisp/rigorous in any ‘absolute’ sense, rather they have been designed to guide the students
to approach proof wrting in an appropriate manner. Some proofs have been left incom-
plete, with scope of formal expansion, so that this document does not end up becoming an
academic opium for undergrads.

Any instance of typos and conflicting content is requested to be reported over an email to
shubhajit.acad[@]icloud[dot]com.

©This document was created using the LATEX-preamble template preamble-I.tex available
at this repo. Please mention the repo if you happen to use any of the preambles from there.
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MODULE 01 - MODELS & PROOFS

1.1 Problem Set 01 - Propositional logic

1. Use ¬, →, ∨ and ∧ to express the following declarative sentences in propositional
logic; in each case state what your respective propositional variables p, q, etc, mean:

(a) If the sun shines today, then it won’t shine tomorrow

(b) If Bob has installed central heating, then he has sold his car, or he has not paid
his mortgage.

(c) Today it will rain or shine, but not both

2. Consider the following situation and an argument for it.

Situation: Reason about whether a given number n is
prime.
Argument:
#1: If n is not divisible by any number other than 1
and itself, then n is a prime number.
#2: n is divisible by 1 and itself only.
Therefore,
#3: n is a prime number.

Introduce propositional variables, represent the entire argument as a semantic entail-
ment relation, and show that it holds true.

3. Consider the following situation and an argument for it.

Situation: You are debugging a program and want to
conclude that the input file format is correct.
Argument:
#1: If there is an error in the input file format and the
error-checking module is disabled, the program crashes.
#2: The program did not crash.
#3: The error-checking module was disabled.
Therefore,
#4: The input file format is correct.

Introduce propositional variables, represent the entire argument as a semantic entail-
ment relation, and show that it holds true.

4. Construct a truth table for each of these propositional formulas. Be mindful of the
precedence of logical connectives, as it may affect the evaluation. Refer to the slides
for the correct precedence order.

(a) p ∨ q ∧ s
(b) p1 ∧ ¬p2 ↔ p3 ∨ p4
(c) p ∨ q → r
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5. Compute the truth table for p → q → r. Unsure about the order of evaluation?
Should it be (p → q) → r or p → (q → r)? Compute the truth table for both orders
of evaluation and compare the results to see if they yield the same truth table.

Do the same for the following formulas as well: p ∨ q ∨ r and p ∧ q ∧ r.

6. Construct a truth table for each of these propositional formulas:

(a) (q → ¬p) ∨ (¬p→ ¬q)
(b) (p ∨ ¬t) ∧ (p ∨ ¬s)
(c) (((p ∧ ¬q) → r) → (¬r → (p→ q)))

(d) (p ∨ q) → (p⊕ q) [Refer to slides for the connective “⊕”]

(e) (p↔ q)⊕ (¬p↔ ¬r) [Refer to slides for the connective “↔”]

7. Let p, q and r be the propositional variables such that:

p You get an A on the final exam
q You do every exercise in this book
r You get an A in this class

Write the following declarative statements (propositions) using p, q, and r and logical
connectives

(a) You get an A in this class, but you do not do every exercise in this book.

(b) You get an A on the final, you do every exercise in this book, and you get an A
in this class

(c) To get an A in this class, it is necessary for you to get an A on the final

(d) You get an A on the final, but you don’t do every exercise in this book; never-
theless, you get an A in this class

(e) Getting an A on the final and doing every exercise in this book is sufficient for
getting an A in this class

8. For the semantic entailment proofs provided below, determine which ones hold and
which ones do not.

(a) p→ q, s→ t ⊨ p ∨ s→ q ∧ t
(b) p ∨ q,¬q ∨ r ⊨ p ∨ r
(c) p→ (q ∨ r),¬q,¬r ⊨ ¬p
(d) q → r ⊨ (p→ q) → (p→ r)

9. Definition Let ϕ and ψ be propositional formula. We say that ϕ and ψ are semanti-
cally equivalent (≡) iff ϕ ⊨ ψ and ψ ⊨ ϕ hold.

Show the semantic equivalence of the following formulas:
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(p ∨ q) ∨ r ≡ p ∨ (q ∨ r) Associative Laws
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) Distributive Laws
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

¬(p ∧ q) ≡ ¬p ∨ ¬q De Morgan’s laws
¬(p ∨ q) ≡ ¬p ∧ ¬q
p→ q ≡ ¬p ∨ q Equivalences involv-

ing →
p→ q ≡ ¬q →≠ p
p ∨ q ≡ ¬p→ q

p ∧ q ≡ ¬(q → ¬p)
(p→ q) ∧ (p→ r) ≡ p→ (q ∧ r)
(p→ r) ∧ (q → r) ≡ (p ∨ q) → r
(p→ q) ∨ (p→ r) ≡ p→ (q ∨ r)
(p→ r) ∨ (q → r) ≡ (p ∧ q) → r
p↔ q ≡ (p→ q) ∧ (q → p)

10. Alice and Bob have each written an algorithm for a function that takes two sorted
lists, List1 and List2, of lengths m and n, respectively, and merges them into a third
list, List3. Part of Alice’c code and the corresponding part of Bob’s code are given
below:

Alice
1 if ((i + j ≤ m + n) && (i ≤

m) &&
((j > n) ∥ (List1[i] ≤ List2[j])))

2 List3[k] = List1[i]
3 i = i+ 1
4 else
5 List3[k] = List2[j]
6 j = j + 1
7 k = k + 1

Bob
1 if (((i+j ≤ m+n) && (i ≤ m) && (j > n)) ∥

((i + j ≤ m + n) && (i ≤ m) &&(List1[i] ≤
List2[j])))

2 List3[k] = List1[i]
3 i = i+ 1
4 else
5 List3[k] = List2[j]
6 j = j + 1
7 k = k + 1

Do these parts of the code do the same thing ? Notice that both the codes are exactly
the same except for line 1 (assuming, both have used the same local variables)

Using the propositional variables given below, express line1 in both codes as a propo-
sitional formula. Then, demonstrate that they achieve the same result.

p to stand for i+ j ≤ m+ n
q to stand for i ≤ m
r to stand for j > n, and
s to stand for List1[i] ≤ List2[j]
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1.2 Problem Set 02 - Predicate logic

1. Formalise the following arguments and then use Natural Deduction to infer the con-
clusion from the given premises. Do not forget to clearly mention the rules of inference
you use in each step.

(a) Premises : “All dementors are fierce.”; “Some dementors do not drink coffee.”
Conclusion : “Some fierce creatures do not drink coffee.”

(b) Premises :“All crows are richly coloured.”; “No large bird live on honey.”; “Birds
that do not live on honey are dull in color.”
Conclusion :“Crows are small.”

2. Prove the following logical arguments using Natural Deduction. State the rules of
inference used at each step.

(a)

∀x (P (x) → ¬Q(x))
∃x (Q(x) ∧R(x))

∴ ∃x (¬P (x) ∧Q(x))

(b)

(∃x P (x)) → (∀x ¬Q(x))

∴ (∃x Q(x)) → (∀x ¬P (x))

3. Mention which variables are free and bound in the following statements.

(a) ∃x P (x) ∨ ∃x Q(y) ∧ ∃yQ(x)
(b) ∀y ∃x P (x) ∨ P (y)
(c) ∀y ∃x (P (x) ∨Q(y))
(d) ∀x P (x) → ∃y Q(x)

4. Negate the following encoded mathematical statement using concepts seen in the mod-
ule for predicate logic. Which concept is being primarily used here?

∀ϵ > 0
(
∃δ > 0

(
∀x ∈ R ∋ (|x− c| < δ ⇒ |f(x)− f(c)| < ϵ)

))
.

5. The TAs of this Discrete Mathematics course have been suspected of unauthorised
access to the AC02-216 lab at Ashoka. They have made the following statements to
PPD. Rudransh said, Elvia did it.” Monu said, “I did not do it.” Elvia said, “Vedant
did it.” Vedant said, “Elvia lied when she said that I did it.” ⋆

(a) If professor knows that exactly one of them is lying, who did it?
(b) If professor knows that exactly one of them is telling the truth, who did it?

Explain your reasoning.
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6. Consider the following predicates. Using these predicates (and these predicates only),
write a predicate that describes the following relationship N(x, y) : “x is the nephew
of y’s spouse”. ⋆⋆

P (x, y) : “x is a parent of y”
S(x, y) : “x and y are siblings”
M(x, y) : “x is married to y”
F (x) : “x is a female”
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1.3 Problem Set 03 - Propositional logic-II

1. Consider the following argument. Demonstrate its validity by encoding it in proposi-
tional logic as ϕ1, ϕ2, ϕ3 ⊢ ψ and providing a proof of its correctness.

▶ Alice is from Vienna
▶ It isn’t the case that both Alice and Bob are Viennese
▶ The same goes for Alice and Russell: they aren’t both from Vienna
Therefore,
▶ Both Bob and Russell are not Viennese

2. Consider the following argument. Demonstrate its validity by encoding it in proposi-
tional logic sequent and providing a proof of its correctness.

▶ It isn’t true that Alice is a logician while Bob isn’t
▶ Also, it isn’t the case that both Eve and Bob are logicians
Therefore,
▶ It isn’t true that both Alice and Eve are logicians

3. Prove the validity of the following sequents:

(a) (p ∧ q) ∧ r, s ∧ t ⊢ q ∧ s
(b) q → (p→ r),¬r, q ⊢ ¬p
(c) (p→ r) ∧ (q → r) ⊢ p ∧ q → r

(d) p→ q, r → s ⊢ p ∧ r → q ∧ s

4. Prove the validity of the following well-known derived rules:

(a) Hypothetical Syllogism p→q q→r

p→r
HS

(b) Disjunctive Syllogism p∨q ¬p
q

DS

(c) Resolution p∨q ¬p∨r
q∨r

DS

5. Consider the following argument. Demonstrate its validity by encoding it in proposi-
tional logic sequent and providing a proof of its correctness.

▶ Discrete Mathematics is not tough and it is a gate course in CS
▶ We will attend Discrete Mathematics classes only if it is tough. That is, We
will attend Discrete Mathematics classes means that it is tough
▶ If we do not attend Discrete Mathematics classes, then we will stage a play
▶ If we stage a play, then we will have fun
Therefore,
▶ We will have fun
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6. Consider the following argument. Demonstrate its validity by encoding it in proposi-
tional logic sequent and providing a proof of its correctness.

▶ If Virat Kohli scores a century, then he will win the match of the match
▶ If Virat Kohli does not scores a century, then he will be dropped from India
team
▶ If Virat Kohli is dropped from India team, then he will become a commen-
tator
Therefore,
▶ If Virat Kohli does not win the match of the match, then he will become a
commentator.

7. Alice and Bob are two individuals, each of whom is either a knight or a knave. It is
known that knights always tell the truth, while knaves always lie. Alice states: “At
least one of us is a knave.” Determine the identities of Alice and Bob.

Answer. We introduce the following propositional variables to represent Alice’s and
Bob’s identities:

p Alice is knave
q Bob is knave

Alice states - at least one of us is a knave. This is given to us as premise. While the
part “at least one of us is a knave” can be encoded as (p ∨ q), we must encode the
whole statement “Alice states: at least one of us is a knave”. Since Alice can be either
a knave or a knight, we must account for both possibilities in our premise. Thus, the
valid encoding is as follows:

ϕ = (p→ ¬(p ∨ q)) ∧ (¬p→ (p ∨ q))

The above is correct because if Alice is a knave, her statement must be false, and if
she is a knight, her statement must be true.

With the premise correctly encoded, our task is to determine the exact identities of
Alice and Bob. There are four possible conclusions:: (p∧ q) or (¬p∧¬q) or (¬p∧ q) or
(p ∧ ¬q). All that remains is to determine which conclusion follows from the premise.

We can verify this using semantic entailment by constructing a truth table.

p q p ∨ q ¬(p ∨ q) p→ ¬(p ∨ q) (¬p→ (p ∨ q)) ϕ
F F F T T F F
F T T F T T T
T F T F F T F
T T T F F T F

Thus, the validity of premise leaves us with the choice that (p, q) = (F, T ).

Basically, Alice is a knight and Bob is a knave. qed.
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8. Provide a valid construction history for each of the following propositional formulas,
adhering to the precedence rules.

(a) (p→ q) → ¬r ∨ (q ∧ p→ r)
Answer:

p, q, r
(p→ q)
q ∧ p
(q ∧ p→ r)
¬r
¬r ∨ (q ∧ p→ r)
(p→ q) → ¬r ∨ (q ∧ p→ r)

(b) p→ ¬q ∨ r → p ∨ s
Answer:

p, q, r, s
¬q
¬q ∨ r
p ∨ s
¬q ∨ r → p ∨ s
p→ ¬q ∨ r → p ∨ s

(c) p ∧ ¬q → ¬p
(d) (p→ ¬q ∨ (p ∧ r) → s) ∨ ¬r

9. Suppose a propositional formula ψ does not follow from the given set of premises
ϕ1, ϕ2, . . . , ϕn. If you were to prove this, which approach would you prefer: ϕ1, ϕ2, . . . , ϕn ⊬
ψ or ϕ1, ϕ2, . . . , ϕn ⊭ ψ? Justify your choice. ⋆

10. The table below represents the complete truth table for some propositional formula ϕ
involving three propositional variables: p, q and r.

p q r ϕ
F F F T
F F T T
F T F F
F T T T
T F F F
T F T T
T T F F
T T T T

(a) Construct a disjunctive clause D1 such that D1 evaluates to F at the valuation
(F, T, F ) and evaluates to T for all other valuations.

(b) Similarly, construct disjunctive clauses D2 and D3 that evaluate to F at the
valuations (T, F, F ) and (T, T, F ) respectively, while evaluation to T otherwise.

(c) Finally, show that ϕ = D1 ∧D2 ∧D3

13



MODULE 02 - PROOF TECHNIQUES

2.1 Problem Set 04 - Proofs

Part-A

1. We call a number p prime if it has exactly two factors. Suppose we define Three −
Prime as those numbers which have exactly three factors. Derive the general form of
a Three− Prime and prove that all Three− Primes must be of your derived form.

2. The prime numbers p and q are called twin primes if |p − q| = 2. Let p and q be
primes. Prove that pq + 1 is a square if and only if p and q are twin primes.

3. Let F0, F1, F2, . . . Fn denotes the the Fibonacci sequence given by F0 = 0, F1 = F2 = 1
and satisfying Fn+2 = Fn+1 + Fn for n ≥ 0. We call Fn the nth Fibonacci number.
Answer the following based on this.

(a) Show that gcd(Fn, Fn+1) = 1, ∀n ≥ 1.
(b) Prove Cassini’s Identity: Fn−1 · Fn+1 − (Fn)

2 = (−1)n, ∀n ≥ 2.

(c) Let α = 1+
√
5

2
and β = 1−

√
5

2
. Show that

Fn =
αn − βn

√
5

, ∀n ≥ 0.

4. Choose a proof method of your choice and prove the following. State the method(s)
you used to seal the deal.

(a) If n is an even integer, then n2 is an even integer.
(b) If m ∈ N and n ∈ N are both perfect squares, then nm is also a perfect square.

p ∈ N is a perfect square if there exists q ∈ N such that p = q2.
(c) If n = ab, where a and b are positive integers, then a ≥ n1/2 or b ≥ n1/2.
(d) The sum of two rational numbers is rational.
(e) If n is a perfect square, then n+ 2 is not a perfect square.

5. Prove the following using Principles of Mathematical Induction.

(a)
∑n

k=1 k = 1
2
· n(n+ 1).

(b)
∑n

k=1 k
2 = 1

6
· n(n+ 1)(2n+ 1).

(c) 3n/3 > 2n/2, ∀n ∈ N.

6. Prove that a2
n − 1 is divisible by 4 × 2n for all odd integers a, and for all integers

n ∈ N. ⋆ ⋆

Part-B

1. Provide a proof by contraposition for the following statements.

(a) If n is an integer and n2 is even, then n is even.
(b) Let a ≥ 0. If for every ϵ > 0, we have 0 ≤ a < ϵ, then a = 0.
(c) If m,n are natural numbers such that m+n ≥ 40, then either m ≥ 20 or n ≥ 20.

2. Provide a proof by contradiction for the following statements.
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(a) Let a > 0 be a real number. If a > 0, then 1
a
> 0.

(b) There are infinitely many prime numbers. ⋆

3. Provide a proof using mathematical induction for the following statements.

(a) Let a ∈ R \ {1}. For all n ≥ 1,
∑n

k=0 a
k = 1−ak+1

1−a
.

(b) Let a, b ∈ N be distinct. For all n ≥ 1, (a− b) divides (an − bn).

(c) For all n ̸= 1 and for all a1, . . . , an ∈ R, we have the AM-GM inequality:

a1 + · · ·+ an
n

≥ (a1 · · · an)1/n .

(d) For an a(̸= 0) ∈ R, if (a+ 1
a
) ∈ Z, then an + 1

an
∈ Z for all n ≥ 1. ⋆

(e) Let S be a set such that |S| = n. Prove that |P(S)| = 2n. ⋆

(f) Show that if n is a positive integer, then
∑

∅≠I⊆{1,...,n}
1∏
i∈I i

= n. ⋆

(g) Let x > −1 be a real number. Prove that (1 + x)n ≥ 1 + nx for all n ∈ N.
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MODULE 03 - MATHEMATICAL STRUCTURES

3.1 Problem Set 05 - Sets

3.1.1 Problems

1. Prove the following set identities.

(a) A \ (B ∩ C) = (A \B) ∪ (A \ C)
(b) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∪ C)

2. Let A and B be sets. Show that

(a) (A ∩B) ⊆ A

(b) A ⊆ (A ∪B)

(c) A \B ⊆ A

(d) A ∩ (B \ A) = ϕ

(e) A ∪ (B \ A) = A ∪B
(f) (B \ A) ∪ (C \ A) = (B ∪ C) \ A

3. Let A,B ⊆ Ω. Show that (A ∩B) ∪ (A ∩ B̄) = A, where B̄ = Ω \B.

4. The symmetric difference of A and B, denoted by A∆B, is the set containing those
elements in either A or B, but not both A and B. Clearly, A∆B = (A∪B) \ (A∩B).

5. What can you say about the sets A and B if A∆B = A ? ⋆

6. Suppose Ω = {a1, a2, a3, a4, a5}. Express each of the following sets with binary strings
of length 5 where the ith bit (left to right) in the string is 1 if i is in the set and 0
otherwise.

(a) {a1, a3, a5}
(b) {a1, a3, a4, a5}
(c) ϕ

7. Suppose Ω = {a1, a2, a3, a4, a5}. Determine the sets specified by the following three
strings: 01100, 01010 and (01100) ∨ (01010) = (0 ∨ 0, 1 ∨ 1, 1 ∨ 0, 0 ∨ 1, 0 ∨ 0).

8. Suppose Ω = {a1, a2, a3, a4, a5}. Determine the sets specified by the following three
strings: 01100, 01010 and (01100) ∧ (01010) = (0 ∧ 0, 1 ∧ 1, 1 ∧ 0, 0 ∧ 1, 0 ∧ 0).

9. Show that |A ∪B| = |A|+ |B| − |A ∩B|.

10. We know the De Morgan’s Law for the case of two sets. Now we attempt to prove
the generalized De Morgan’s Law. Prove the following where Ac is the complement of
a set A: ⋆

(a)
n⋃

i=1

Ai = (
n⋂

i=1

Ac
i)

c. (b)
n⋂

i=1

Ai = (
n⋃

i=1

Ac
i)

c.
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3.1.2 Dilworth’s Lemma : An example of robust proof-writing

This is just to present an example as to how to write robust proofs.

It looks intimidating at the first look, but clearly it is simple after

a logical break-down.

Definition 3.1.1. (Chain.) For any poset R = (S,⪯), a chain is a sequence,

a1 ⪯ a2 ⪯ · · · ⪯ an

where ai ̸= aj,∀i ̸= j such that each item is comparable to the next one in the chain
and is smaller with respect to ⪯.

Definition 3.1.2. (Antichain.) An antichain in a poset is a set of elements such
that no two elements in the set are comparable. Or for any distinct x, y in an anti-
chain set, we have x ̸⪯ y and y ̸⪯ x.

Theorem 3.1.3. If the largest chain in a partial order on a set A is of size t, then A
can be partitioned into t antichains.

1. Prove the Dilworth’s Lemma stated below using the above given facts.

(Dilworth’s Lemma.) For all t > 0, every partially ordered set with n elements
must have either a chain of size at least t or an antichain of size at least n

t
.

Proof. Assume that Dilworth’s lemma is false, that is ∃ a poset R = (S,⪯) with
t > 0 where all chains are of size < t and all antichains are of size strictly less than n

t
.

Consider the smallest such t, with the poset’s largest chain being size t − 1. The-
orem(3.1.3) is used to find t − 1 antichains that partition the set. Now, using the
fact that chains must have size strictly less than n

t
by our assumption and that the

antichains Ai form a partition, their sizes must sum to the size of S.

t−1∑
i=1

|Ai| ≤
t−1∑
i=1

n

t
=
n(t− 1)

t
< n. ⊥

Since all antichains form a partition of the set, sum of the sizes of all the antichains
must exactly be n. A contradiction and hence the assumption of Dilworth’s lemma to
be false is incorrect .

This completes the proof.
qed.
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3.2 Problem Set 06 - Functions

1. Why is f : R → R is not a function if

(a) f(x) = 1/x (b) f(x) = −
√
x

2. Determine whether each of these function f : Z → Z is injective

(a) f(n) = n− 1
(b) f(n) = n2 + 1
(c) f(n) = n3

(d) f(n) = ⌈n/2⌉, where ⌈x⌉ denotes the smallest integer greater than or equal to x.

3. Determine whether the function f : Z× Z → Z is onto?

(a) f(m,n) = 2m− n (b) f(m,n) = m2 − n2

4. Give an explicit formula for a function f : Z → N such that it is

(a) injective, but not surjective

(b) surjective, but not injective

(c) bijective

(d) neither injective not surjective

5. Let f : A→ B and g : B → C be functions.

(a) Show that if g ◦ f is injective, then f is injective.

(b) Show that if g ◦ f is surjective, then g is surjective

6. Let f : A→ B be a function. Let E,F ⊆ A. Then prove the following:

(a) f(E ∪ F ) = f(E) ∪ f(F ) (b) f(E ∩ F ) ⊆ f(E) ∩ f(F )

7. Consider a function f : A→ B. Let S and T be subsets of B. Show that

(a) f−1(S ∪ T ) = f−1(S) ∪ f−1(T )

(b) f−1(S ∩ T ) = f−1(S) ∩ f−1(T )

8. Let A = {−1, 0, 2, 4, 7}. Find f(A) whenever f is defined as:

(a) f(x) = ⌈x/5⌉ (b) f(x) = ⌊(x2 + 1)/3⌋

9. Let L = {0, 1}n, the set of all binary strings of length exactly n. Define a function
f : {0, 1}n → N such that

∑
w∈L f(w) = 2n. ⋆

10. Let L = {0, 1}n, the set of all binary strings of length exactly n. Define a function
f : {0, 1}n → N such that

∑
w∈L f(w) = 2n−1. ⋆

11. Determine the number of functions f : {1, 2, . . . , 7} → {1, 2, . . . , 7} such that f(x) ̸= x
for all x. ∗

12. Determine the total number of functions f : A→ B that can be defined when |A| = m
and |B| = n. ∗
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3.3 Problem Set 07 - Mixed Bag

1. Consider any relation R on a set S. We define R−1 as the inverse relation of R.
(a, b) ∈ R−1 ↔ (b, a) ∈ R. Show the following :

(a) (R−1)−1 = R.

(b) Let T be another relation on S. Show the De Morgan’s Law for relations, that
is, (R ◦ T )−1 = T−1 ◦R−1.

(c) R−1 ◦R is symmetric and reflexive over some subset of S.

2. Show the following are equivalence relations.

(a) Let two sets A,B be related if there exists functions f : A→ B, g : B → A such
that f, g are injections.

(b) R is a relation over Z, defined by R = {(a, b) : a, b ∈ Z∧n|(a− b)} for some fixed
n ∈ Z, n ̸= 0.

3. For matrix A =

Å
1 1
0 1

ã
, prove that for any n ∈ N, An =

Å
1 n
0 1

ã
.

4. For C =

Å
0 1
1 1

ã
, prove that for any n ∈ N, Cn =

Å
Fn−1 Fn

Fn Fn+1

ã
, where Fn is the nth

Fibonacci number. Further also prove that the determinant of Cn is (−1)n. ⋆

5. A recurrence of the form f(n) = h(n)f(n − 1) + g(n) is called a first-order linear
recurrence. Determine the general solution (closed-form of f) when h(n) is a constant,
say r. ⋆

6. Find a closed-form representation using unrolling technique, for the solution to the
recurrence

f(n) =

®
b if n = 0

rf(n− 1) + a if n ≥ 1
,

where r and a are constants.

7. Show that the closed-form expression for the linear-order recurrence f(n) = 4f(n −
1) + 2n, with f(0) = 3 is 4n+1 − 2n. ⋆⋆

8. Show that the closed-form expression for the linear-order recurrence f(n) = 3f(n −
1) + n, with f(0) = 10 is 43

4
3n − n+1

2
− 1

4
.

[Hint: for any real number a ̸= 1,
∑n

i=1 ia
i = n·an+2−(n+1)·an+1+a

(1−a)2
]

9. The recurrence given in question 6 is first-order linear recurrence. With r ̸= 1, show
that f(n) = rnb+ a1−rn

1−r
.

10. Consider the following function f . For every n ∈ N, f(n) be number of functions one
can define with domain as the set {1, 2, . . . , n} and codomain as the set {1, 2, . . . ,m}.
Give a recursive description of f . ⋆ ⋆ ⋆
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MODULE 04 - GROWTH OF FUNCTIONS

4.1 Problem Set 08 - Asymptotics-I

Formal Notations of Asymptotics

Consider the following definitions for functions f : Z+ → R+ and g : Z+ → R+.

Notation . Definition Example

Tight Bounds

O(g(n)) : ∃c > 0, ∃n0 > 0 s.t. ∀n > n0 f(n) ≤ c.g(n) f(n) = 5n2 + 2n− 17 ∈ O(n2), O(n3); /∈ O(n)
Ω(g(n)) : ∃c > 0, ∃n0 > 0 s.t. ∀n > n0 f(n) ≥ c.g(n) f(n) = 5n2 + 2n− 17 ∈ Ω(n2),Ω(n); /∈ Ω(n3)

Θ(g(n)) :
∃c1 > 0, ∃c2 > 0, ∃n0 > 0 s.t. ∀n > n0

c1.g(n) ≤ f(n) ≤ c2.g(n)
f(n) = 5n2 + 2n− 17 ∈ Θ(n2),Θ(n3); /∈ Θ(n)

Loose Bounds

o(g(n)) : ∀c > 0, ∃n0 > 0 s.t. ∀n > n0 |f(n)| ≤ c. |g(n)| f(n) = 7n− 17 ∈ o(n2)
ω(g(n)) : ∀c > 0, ∃n0 > 0 s.t. ∀n > n0 |f(n)| ≥ c. |g(n)| f(n) = 7n− 17 ∈ ω(1)

Approximation

∼ (g(n)) : limn→∞
f(n)
g(n) = 1 f(n) = n(n− 1) ∼ n2

1. Find the Θ−bounds for the following recurrences.

(a) T (n) = 4T (n/2) + c where T (1) = c0

(b) T (n) = T (n/4) + T (n/2) + n · c where T (1) = c0

(c) T (n) = T (n− 2) + T (n− 4), where T (0) = T (1) = T (2) = T (3) = c0.

(d) T (n) = T (n− 1) + T (n− 2) + k, where T (0) = 0 and T (1) = 1.

2. Solve the following linear-homogeneous recurrences and comment on their O−bounds.

(a) F (n) = 7F (n− 1)− 12F (n− 2), n ≥ 2 and F (0) = 5, F (1) = −5.

(b) F (n) = F (n− 1) + 2F (n− 2), n ≥ 3 and F (1) = 0, F (2) = 6.

(c) F (n) = −F (n−1)+4F (n−2)+4F (n−3), n ≥ 3 and F (0) = 8, F (1) = 6, F (2) =
26.

(d) F (n) = 4F (n− 1)− 4F (n− 2), n ≥ 3 and F (1) = 1, F (2) = 3.

(e) F (n) = 8F (n−1)−16F (n−4), n ≥ 4 and F (0) = 1, F (1) = 4, F (2) = 28, F (3) =
32.

(f) F (n) = −3F (n − 1) − 3F (n − 2) − F (n − 3), n ≥ 3 and F (0) = 1, F (1) =
−2, F (2) = −1.

3. For function f, g and h mapping from N to R+, prove the following:

(a) If f = O(h) and g = O(h), then f + g = O(h), where f + g : N → R+ defined as(
f + g

)
(x) = f(x) + g(x).

20



(b) If f = O(h) and g = O(h), then f · g = O(h), where f · g : N → R+ defined as(
f · g

)
(x) = f(x)g(x).

4. For p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, show that p(x) = O(xn).

5. Prove the following asymptotic identities for n ∈ N:

(a) n! = O(nn).

(b) log n! = O(n log n).

(c) lnn = O(n).

6. Prove that for some k ∈ N,
∑k

i=1 i
8 = O(k9). ⋆

7. Prove that for some k ∈ N,
∑k

i=1 i
8 = Ω(k9). ⋆ ⋆ ⋆

8. Prove that n2 + 17n = n2 + o(n lnn). ⋆ ⋆ ⋆

9. Prove the result that n2 = o(n2 lnn). As a corollary to this result, can we show that
n2 = O(n2 lnn) ? ⋆ ⋆ ⋆
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4.2 Problem Set 09 - Asymptotics-II

1. Is it true that f = O(g) implies log f = O(log g)?

2. Show that if f(n) = log n!, then f(n) is O(n log n).

[Hint: n! = n · (n− 1) · · · 2 · 1 ≤ n · n · · ·n · n]

3. Show that if f(n) = n2+1
n+1

, then f(n) is O(n). Provide explicit values for c and n0.

[Hint: n2+1
n+1

≤ n2+n2

n+1
≤ 2n2

n
= 2n]

4. Show that if f(n) = n2.5, then f(n) is 2O(logn).

5. A function f(n) is said to have a quasi-linear growth rate if f(n) = Θ(n log n). Show
that if f(n) = n log n− 10n+ 3, then f(n) exhibits quasi-linear growth.

6. Show that if f(n) =
√
n− log n, then f(n) exhibits sub-linear growth.

7. Show that if f(n) = logn− log log n+ 2, then f(n) exhibits sub-linear growth.

8. Show that if f(n) = 1 + 2 + · · ·+ n, then f(n) is Ω(n2). Provide explicit values for c
and n0.

9. Suppose f(n) is O(g(n)). Does it follow that 2f(n) is O(2g(n))?

10. Show that if f(n) = 2n3 + 4n2 log n, then f(n) is O(n3).

11. Show that, for 0 ≤ a < b, na = o(nb).

12. Show that, for a > 0, log n = o(na).

13. Show that if f(n) is o(g(n)), then f(n) cannot be Ω(g(n)).

14. Show that if f(n) = n
logn

, then f(n) is O(n) but it is not Ω(n).

15. Show the following:

(a)
√
n is o(n).

(b) n is o(n log log n).

(c) n log n is o(n2).
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MODULE 05 - THEORY OF DISCRETE PROBABILITY

5.1 Problem Set 10 - Probability distributions-I

1. Consider P : Ω → [0, 1] to be a probability distribution on a non-empty sample space
Ω. For events A,B ⊆ Ω prove the identities:

(a) P(Ā) = 1− P(A).
(b) P(A ∩ B̄) = P(A)− P(A ∩B).

2. Consider the single-coin tossing experiment with sample space Ω = {H,T}. Give
a probability distribution explicitly for the followign situtaions:

(a) The coin is biased and after running the experiment sufficiently large number of
times it is establishes that H appears thrice as many times as T does.

(b) The coins are biased and it is statistically established that for every three ap-
pearances of H, we get two appearances to T.

3. For a fixed n ∈ N, let Ω = {0, 1}n, the set of all n-length binary strings. Further any
ω ∈ Ω can be represented as ω = b1b2b3 . . . bn, where each bi is either 0 or 1.
Let p, q ∈ R such that 0 ≤ p, q ≤ 1 and p+q = 1. Show that the function P : Ω → [0, 1]
defined as:

P(ω) =
n∏

i=1

pbi · q1−bi ,

is a probability distribution on Ω. ⋆⋆

4. Let Ω = {0, 1}4 be the set of all binary strings of length 4. Consider the experiment
of generating binary strings of length 4 which realises the uniform probability
distribution. Assume appearances of 0s and 1s to be independant and answer the
following:

(a) What is the probability that the generated binary string will contain at least two
consecutive 0s, given the fact that the binary string starts with 0?

(b) What is the probability that the generated binary string will contain at least two
consecutive 0s, given the fact that the binary string starts with 1?

5. Consider P : Ω → [0, 1] to be a probability distribution on a non-empty sample space
Ω. Answer the following using the fact that a probability distribution distributes over
disjoint events.

(a) For events A,B ⊆ Ω, show that P(Ā|B) = 1− P(A|B).

(b) For events A,B ⊆ Ω, it is given that P(A) = 1/5, P(A|B) = 1/3 and
P(B|A) = 1/7. Calculate P(B).

6. For Ω = {1, 2, 3, 4}, consider P : Ω×Ω → [0, 1] to be the uniform probability distribu-
tion on Ω×Ω. Let A,B ⊆ Ω×Ω be the event where A := {(s, t) ∈ Ω×Ω | s+ t = 6}
and B := {(s, t) ∈ Ω× Ω | s+ t = 0 mod 2}. Compute PB(A).
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7. Consider P : Ω → [0, 1] to be a probability distribution on a non-empty sample space
Ω. For independant events A,B ∈ Ω and event C ∈ Ω show that:

P(C) · P(A ∩B) ≤ P(A) · P(B).

8. Let Ω = {0, 1}4 be the set of all binary strings of length 4. Consider the experiment
of generating binary strings of length 4 which realises the uniform probability
distribution. Let A ⊆ Ω be the event that the generated binary string starts with 1
and B ⊆ Ω be the event that the generated binary string contains even number of
1s. Under the assumption that appearances of 0s and 1s are independant, determine
whether A and B are independant or not.

9. Consider P : Ω → [0, 1] to be a probability distribution on a non-empty sample space
Ω. If A,B,C ⊆ Ω such that A∩ C̄ = B ∩ C̄, then show that |P(A)− P(B)| ≤ P(C). ⋆

10. Consider P : Ω → [0, 1] to be a probability distribution on a non-empty sample space
Ω. Show that if A,B ⊆ Ω are independant events, then events Ā ⊆ Ω and B are also
independant.

11. Consider probability distribution P1 : Ω → [0, 1] and P2 : Ω → [0, 1] on a non-empty
sample space Ω, show that ∑

ω∈Ω

|P1(ω)− P2(ω)| ≤ 2.

▶ HINT: Triangle inequality: |a+ b| ≤ |a|+ |b|, might come handy.
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5.2 Problem Set 11 - Probability distributions-II

1. Let events A, B, C ⊆ Ω form a cover of the sample space Ω. If P(A) = P(B) = P(C)
and these events are mutually independant then compute P(A ∩ B ∩ C). Consider P
realises the uniform probability distribution.

2. Let A and B be two mutually disjoint events. Further, let A and B together be
independent of event C. If P[A] + P [B] = a and P[C] = b, and P realises the uniform
probability distribution then compute P[A ∪B ∪ C]. ⋆
▶ HINT : Use the Principle of Inclusion-Exclusion, i.e., |A ∪ B ∪ C| = |A| + |B| +
|C| − |A ∩B| − |B ∩ C| − |C ∩ A|+ |A ∩B ∩ C|.

3. Let A, B and C be three events such that the events A and B are mutually disjoint
events. Further it is given that P[A ∪ B] = 1, P[A ∩ C] = 1/4 and P[C] = 7/12.
Compute P[B ∩ C]. ⋆

4. Let A, B, C be any three events with P[A] = 0.3, PA[B] = 0.2, PA[C] = 0.1 and
PA[(B ∩ C)] = 0.05. Then compute P [A \ (B ∪ C)].

5. Consider a random variable X such that E[X2] = 10 and E[X]2 = 6. Compute
E[(X − E[X])2].

6. Joint distribution. Suppose Π be a random experiment with sample space Ω =
{(a, b) | 1 ≤ a, b ≤ 4} and it realises the uniform probability distribution P on Ω.
Consider the following two random variables X, Y from Ω to the set {1, 2, 3, 4} defined
as:

X(a, b) = max(a, b); Y (a, b) = min(a, b) ∀(a, b) ∈ Ω.

Now, consider the joint random variable (X, Y ). Clearly,
(X, Y ) : Ω× Ω → {1, 2, 3, 4} × {1, 2, 3, 4}. Compute PX×Y

(
(3, 2)

)
.

7. Consider the joint random variable (X, Y ) with domain {0, 1} × {0, 1, 2}. It is given
P(X,Y )[(a, b)] =

a+b
9
, ∀(a, b) ∈ {0, 1} × {0, 1, 2}.

(a) Marginal distributions. Determine marginal distributions PX and PY .

(b) Independence of distributions. Are random variables X and Y independent?

8. Let X : Ω → S and Y : Ω → T be two random variables such that the joint random
varible (X, Y ) realises the uniform distribution S×T . Determine the distributions PX

and PY , qualitatively. Further, are random variables X and Y independent?

9. Let P : {0, 1}3 → [0, 1] be the Uniform probability distribution. Let X : {0, 1}3 →
{0, 1} be a random variable that maps elements (b1b2b1) ∈ {0, 1}3 to 1 if and only if
b1 = b3. Let Y : {0, 1}3 → 0, 1 be a random variable that maps elements (b1b2b1) ∈
{0, 1}3 to 1 if and only if (b1 + b2 + b3) = 2. Compute P(X,Y )(1, 1). ⋆

10. Let X be a random variable with the probability distribution
PX : {−2,−1, 0, 1, 2} → [0, 1] defined as PX(x) = k(1 + |x|)2, where k ∈ R is a
constant. Compute PX(0).

11. Let X be a random variable such that Range(X) = {0, 1, 2, . . . , n}. Then show that∑n
i=1 PX [X ≥ i] = E[X]. ⋆
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12. Consider Π, the experiment of rolling two unbiased dice. Let X and Y be random
variables where X encodes sum of the two faces and Y encodes the absolute value of
the difference of the two faces. Show that E[XY ] is 0.

▶ HINT: Use linearity of expectations, i.e., E[X + Y ] = E[X] + E[Y ].
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MODULE 06 - THEORY OF GRAPHS

6.1 Problem Set 12 - Graphs-I

To test command over basic definitions & notations

1. Consider a directed graph G. Prove that graph G being strongly connected implies
that G is weakly connected, and not the other way around.

2. Consider a directed graph G. Prove that graph G being a Null graph implies that G is
also an Empty graph. Provide a counter-example to show that the other way around
is not always true.

3. The general graph shown in the following figure(1) goes by the name of GraphBuster in
standard literature. Count and determine the cardinality of V and E in GraphBuster.

Figure 1: GraphBuster

4. A graph of order n is called complete, denoted byKn provided that each pair of distinct
vertices forms an edge. Show that a complete graph of order n has n(n− 1)/2 edges.

Problems of type ¬ (simple)

5. Let G be a general graph. Show that the sum of the degrees of all the vertices of G
is an even number, and consequently, the number of vertices of G with odd degree is
even.

6. If G is a simple graph of order n ≥ 3, such that for all pairs of distinct vertices x and
y in G that are not adjacent, we have deg(x)+ deg(y) ≥ n, then show that G must be
connected. ⋆

7. Let G be the graph such that elements of {1, 2, 3, · · · , 20} form its vertices. In G, two
vertices (integers) are joined by an edge if and only if their difference is an odd integer.
Show that G is a bipartite graph.

8. Prove that if a multigraph G is bipartite, then each of its cycles has even length. Note
that: length of any cycle/path is the number of edges it is composed of.

9. For a fixed n ∈ N, let Gn be the graph such that elements of {0, 1}n, the set of all
n−length binary strings, form its vertices. In Gn any two vertices are joined by an
edge if and only if they differ in exactly one 1-bit. Show that G is a bipartite graph. ⋆
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10. Prove that a graph of order n with at least

(n− 2)(n− 1)

2
+ 1

edges must be connected.

11. Prove that a graph of order n with every vertex having degree at least n
2
must be

connected.

12. In a simple graph if two vertices x and y are joined by a path then, show that they
are also joined by a simple path.
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6.2 Problem Set 13 - Graphs-II

Problems of type (simple)

1. The two graphs shown below in figure (2) have the same number of vertices and edges.
Prove that despite these they are not isomorphic.

Figure 2: Sample graphs 01

2. Consider the two graphs shown below in figure (3), where both the graphs have same
degree sequence (3, 3, 3, 3, 3, 3). Show that despite this, they are not isomorphic.

Figure 3: Sample graphs 02

3. A graph has 26 vertices and 58 edges. There are five vertices of degree 4, six vertices
of degree 5, and seven vertices of degree 6. If the remaining vertices all have the same
degree, what is this degree?

4. A graph has 24 vertices and 30 edges. It has five vertices of degree 4, seven pendant
vertices, and seven vertices of degree 2. All other vertices have degree 3 or 4. How
many vertices of degree 4 are there?

Problems of type ¬ (simple)

5. Prove or Disprove, whether a bipartite graph can have K3 as its subgraph?

6. Let d0(G) be the least among the degrees of the vertices of an n−vertex graph G.
Prove that if d0(G) ≥ (n− 1)/2, then the graph G is connected. ⋆

7. Prove that a graph G with v vertices and e edges has at least v− e connected compo-
nents. [Hint : use induction on e.]

8. Prove that a connected graph G with n vertices contains at least n− 1 edges. [Hint :
the proof might be an application of the result in the previous question, when proved!]

9. If G is a connected graph with v vertices and e edges, then v ≤ e+ 1.

10. If G is a connected graph, then removing an edge from a cycle will not make G a
disconnect graph. ⋆
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6.3 Problem Set 14 - Graphs-III

1. A graph G = (V,E) is called k-regular if deg(v) = k for all v ∈ V . A graph is called
regular if it is k-regular for some k. Give example of a regular bipartite graph.

2. Prove that every induced subgraph of a complete graph is complete.

3. Prove that every subgraph of a bipartite graph is bipartite.

4. If two graphs G1 and G2 are isomorphic then their degree sequences are the same.

5. What is the sum of the entries in a row of the adjacency matrix of an undirected
simple graph?

6. Let u, v, and w be three distinct vertices in a graph. There is a path between u and v
and also there is a path between v and w. Prove that there is a path between u and
w.

7. Suppose (d1, . . . , dn) be a degree sequence of a tree. Determine
∑n

i=1 di.

8. Show that the number of vertices n in a full binary tree is always odd.

9. Let p be the number of pendant vertices in a binary tree T with n vertices. Show that

p =
n+ 1

2
.

10. Let k ∈ N be the height of a binary tree T . Determine the maximum number of leaf
nodes of T .

11. Consider the graph defined by the adjacency matrix provided below.

0 1 1 1 1 0 0 0
0 1 1 0 1 0 0

0 0 1 0 1 0
0 0 1 0 1

0 0 1 1
0 1 1

0 1
0


(a) Determine if it is an Euler graph.

(b) Determine if it admits a Hamiltonian circuit.

(c) Give a spanning tree of this graph.
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MODULE 07 - COUNTING PRINCIPLES

7.1 Problem Set 15 - Sum & Product Rule

1. How many different licence plates with exactly 6 characters (numbers and lowercase
letters) can be made given the following specifications?

(a) No restrictions. This plate can have any arrangement of digits and letters and
repetition is allowed.

(b) The first two characters are digits and the last four are letters. Repetition is not
allowed.

(c) The characters alternate between letters and digits and no digit may be repeated.

(d) The license plate includes no more than one digit.
Hint: Consider all possible cases.

(e) The first character must be either “T” or 0 and the last character must be either
“J” or “Q”.

2. A university student is looking to take out a book on either frogs or fireflies from their
campus library. There are 45 books available covering frogs, and 13 discussing fireflies.
How many books does this student have to choose from?

3. Joselyn stops by a sandwich shop on her way home from class. The shop sells 4 types
of potato chips, 3 types of cookies, 7 different drinks and 10 different sandwiches. She
is interested in determining how many different ways there are to order if she’d either
like a drink and a cookie, or a meal which includes a sandwich, a drink, and chips.

4. How many nonempty sets of letters can be formed from 3 X’s and 5 Y’s?
Hint: As these are sets, the order of the letters is irrelevant.

5. How many ternary sequences (sequences using only the digits 0,1, and 2) of length 10
exist such that no consecutive digits are the same?

6. How many integers, x, between 100 and 999 are divisible by 5?

7. How many integers, x, between 100 and 999 are divisible by 5?

8. Let A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bn}. How many functions f : A → B
are there such that:

(a) f(a1) = f(a2)

(b) f(a1) = b1 and f(a2) ̸= b1

(c) f(a1) ∈ {b1, b2, b3}
(d) f(a1) = bk, for some k ∈ {1, 2, . . . , n} and for all other ai, i ∈ {2, 3, . . . ,m}

f(ai) ̸= bk

(e) f(a1) ̸= f(a2)

9. How mnay functions are there from a set of 5 elements to a set with 3 elements?

10. How many different ways are there to answer a true or false test with 25 questions,
assuming every question is answered?
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11. The CS department is hosting an event. They are randomly inviting one professor and
one student to give a speech together. If there are 1500 students and 50 professors,
how many different pairs could give a speech? What about if only one person gives a
speech and it could be a student or a professor?

12. Jamie is buying a combination lock to lock up her work-out gear at the gym. Jamie
would like to pick the most secure lock to protect her valuables. Lock 1 advertises
that its combination is an ordered sequence of numbers between 1 and 35 such that
the first number cannot be the third number. Lock 2 advertises that its combination
is an ordered sequence of 4 numbers between 1 and 25 where the first three numbers
are all distinct and the fourth number must be the same as one of the previous three
numbers. Which lock should Jamie purchase?

13. How many words (strings of letters) exist that are length 1, 2 or 3?
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7.2 Problem Set 16 - Permutations & Combinations

1. How many different 6 letter permutations of the word ‘COFFEE’ are there?
Hint: Be aware of repeated letters.

2. (a) You and seven friends dine at a circular table at a fancy restaurant. How many
different ways can the eight of you seat yourselves around this table?

(b) What if two people insist on sitting together?
Hint: The arrangement is considered the same if everyone sits next to the same
two people.

3. There are 25 people competing in the school swim race including Elvia, Monu, and
Poulomi.

(a) At the race, the first, second, third, fourth, and fifth fastest swimmers receive
medals. How many possible ways can these medals be distributed?

(b) How many possible ways can these medals be distributed if Elvia, Monu, and
Poulomi always place in the top three positions?

4. A group of eight TAs would sit in a row at the movie theater, how many ways can
arrange themselves if Poulomi and Monu refuse to sit beside each other?

5. In how many ways can the numbers 3, 4, 4, 5, 6, 7, 8 be arranged to create numbers
less than 6000000?

6. Aryika has 20 books in her room. Her three friends each want to borrow two books
from her. Tomorrow they’re all coming over to pick them up, in how many different
ways can Aryika loan out the books such that the order she gives each friend their
books is the order in which they read them?

7. Aaryan lost the last two digits of his friend’s phone number. How many different
phone numbers will Aaryan potentially have to call before calling his friend?

8. In a group of teenagers m of them are naturally brunette and n of them were not born
with brown hair. How many different ways can these teenagers be arranged in a line
such that the m brunette’s are all together?

9. Using the definition of a permutation, show that nP n = n!.

10. How many ways can the letters of MISSISSIPPI be permuted?

11. A K-pop fan has 10 different posters to arrange (in a line) on their wall. Three posters
are from one band, four from a different group, and three from a third group. How
many ways can the posters be lined up such that posters from the same group are
together?

12. Prove that for an integer n ≥ 2 that P (n+ 1, 2)− P (n, 2) = 2 · P (n, 1).

13. (a) How many ways can the letters in BOOKKEEPER be rearranged?

(b) What if the E’s cannot be consecutive?

(c) What if the E’s had to be consecutive?

(d) What if the vowels had to occur consecutively?
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14. A lottery ticket consists of five unordered, distinct numbers between 1 and 69 and one
letter. A winning ticket must contain all the numbers and the letter drawn by the
lottery company. If the prize is USD 10,000,000 and the tickets cost USD 0.50 is it
worth buying all the tickets to ensure a win?

15. The local college’s intramural basketball team accepts 21 players. This year 80 students
tried out. They want to arbitrarily decide who to let on the team. In each scenario,
determine how many different possible teams there are.

(a) No further restrictions.

(b) The school boasts about the opportunities available for first year students so, the
team wants to make 10 out of the 21 team-members first year students. Out of
the 80 players who tried out, 40 of them are first year students.

(c) While the intramural team is non-competitive, they enjoy beating the neighbour-
ing college’s team, so they guarantee the two highest scoring players from last
year’s team a spot.

(d) The school wants to have a mix of students who played last year and students
who didn’t. 65 of the students who registered did not play last year, while 15
students did. The school wants 10 students who did not play last year and 11
who did.

(e) The coach wants to make sure there is a good mix of types of players on the
team. Each student tells the coach which position they play: 20 students play
centre, 15 play shooting guard, 10 play point guard, 20 play small forward, and
15 play power forward. The coach wants to ensure the team has 5 people who
play shooting guard and 4 people of every other position.

(f) There are 5 students who are graduating this year. The coach wants to ensure
at least 3 of them get to play.

16. A teacher randomly selects 4 numbers from 1 to n. There are exactly 2672670 possible
sets of 4 numbers that can be chosen. Determine n.

17. (a) If there are 12 students in a class and the teacher would like to create groups of
6, how many ways can the groups be arranged?

(b) What if two students refuse to work together?

18. Shubho wakes up every morning and makes himself a smoothie with frozen fruit. He
picks 3 fruits everyday to make his smoothie with out of the 10 options types of fruit
in his freezer. He likes any combination of fruit in his smoothie except banana with
apple. How many ways are there for Shubho to make his smoothie?

19. Robert is picking the group from his dance class to perform the opening act at the
upcoming show. The opening act will have 8 students out of a class of 20, how many
possible groups of dancers are there given each of the following scenarios:

(a) No further restrictions.

(b) The opening act must be half advanced dancers and half beginner dancers. There
are ten students of each level in the class.

(c) Charlotte and Mohammad do not want to dance together.

(d) The opening act has a solo at the end that one of the 8 dancers will perform.
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20. Give an algebraic and a combinatorial proof of:

m

Ç
n

m

å
= n

Ç
n− 1

m− 1

å
.

Recall: A combinatorial proof is an arbitrary scenario where the same thing can be
counted two different ways.

21. Give a combinatorial proof of the identity:

n∑
k=0

Ç
n

k

å
= 2n.

22. Give a combinatorial proof of Pascal’s Identity:
For any integer n ≥ 2 and each integer k such that 0 < k < n:Ç

n

k

å
=

Ç
n− 1

k − 1

å
+

Ç
n− 1

k

å
.
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7.3 Problem Set 17 - Pigeonhole Principle

1. Apply the pigeonhole principle to solve the following problems. Describe the ‘pigeons’
and the ‘pigeonholes’.

(a) There are 367 individuals attending a mathematics seminar, is it possible that
everyone has a different birthday? Explain.

(b) Consider a subset of the positive integers with 29 elements. Prove that at least
two elements in this set will have the same remainder when divided by 28.

(c) You are handed a bag with 9 pairs of shoes in it. If you take shoes one at a time,
how many shoes must you take out to guarantee that you have found a pair?

(d) You are given a list of 17,500 three letter “words” (strings of letters of length 3,
repetition is allowed). Are all of these words distinct? Explain.

2. At a party there are n people, where n ≥ 2. Prove that it is guaranteed that two
people will speak to the exact same number of people.

3. Prove that in any set of exactly 13 integers 12 divides the difference of two numbers
from that set.

4. Farmer Mary has 32 cows in a rectangular paddock measuring 15 metres by 24 metres.
Show that at any given moment, there are two cows that are no more than 5 metres
apart.

5. How many integers must you pick in A = {1, 2, . . . , 200} to ensure that there is at
least one number divisible by 5?

6. How many integers in X = {0, . . . , 60} must be chosen to ensure that an odd integer
is selected?

7. How many people must attend a conference to ensure that at least two attendees share
the same first and last initial?

8. While trying to apply for scholarships to pay for college, Brynn spends six weeks
sending out applications. She sends out at least one application daily, but less than
60 were sent out over the course of these six weeks. Prove that there was a period of
consecutive days where Brynn applied for 23 scholarships.

9. Show that any subset of the positive integers with more than three elements, will
contain two distinct elements whose sum is even.

10. The local library has 12 computers available. There are 42 people who signed up to
use them today. Each person may only use one computer, and to minimize the strain
on the computers, the library does not allow more than six people to use a single
computer in a day. Show that there are at least five computers used by three or more
individuals.

11. An ice cream parlour sells 15 different ice cream flavours. A parent brings 8 children
to the parlour and lets them each get a double-scoop of ice cream with the requirement
that each scoop must be different flavor. Is it possible for no flavour to be ordered
more than once?
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12. Prove that if more than 1001 integers are selected from {1, . . . , 2000} then:

(a) there are two integers with the property that one number divides the other.

(b) there are two integers that are relatively prime (i.e. there exist two integers, say
m and n, such that gcd(m,n) = 1).
Hint: Every pair of consecutive integers are relatively prime.

13. Prove that any subset of A = 1, 2, ..., 9 with 6 or more elements contains two elements
whose sum is 10.
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7.4 Problem Set 18 - Mixed Bag I & II

Part-I

1. The total number of ways you can rearrange the letters in “ARRANGE” so that all
the vowels always appear together, is (choose one):
A. 5040 B. 1260 C. 180 D. 60 E. None of these.

2. The houses in a locality are numbered with two different letters (out of A, B, . . . , Z)
followed by two different digits (out of 0, 1, 2, . . . , 9). The number of possible house
number-plates, is (choose one):
A. 67600 B. 58500 C. 7760 D. 7400 E. None of these.

3. Which statement among the following, is TRUE (choose one)?
C(n, r) denotes the number of r-combinations out of n objects, same as nCr.
(i) C(15, 5) = 2× C(15, 10);
(ii) C(15, 5) = (1/3)× C(15, 10);
(iii) C(15, 5) = C(15, 10);
(iv) C(15, 5) = (1/2)× C(15, 10);
(v) None of these.

4. In a test, Rimi has to answer exactly 10 questions out of 15 questions with the con-
straint that she has to answer 2 questions from the first 5 questions, and 8 from the
remaining 10 questions. The number of choices Rimi can have, is (choose one):
A. 3003 B. 450 C. 55 D. 1287 E. None of these.

5. We have three dice colored red, blue, and green, which are being simultaneously rolled.
What is the number of outcomes such that all values are distinct? (choose one):
A. 216 B. 210 C. 180 D. 120 E. none of these

6. A binary string comprises 0’s and 1’s only. We consider all 8-bit binary strings, each
of which contains exactly five 0’s and three 1’s. For example, 11100000 is a valid string
whereas 10101110 is not. The number of such strings is (choose one):
A. 6 B. 32 C. 128 D. 256 E. None of these

7. In a DS of Discrete Mathematics, there are 10 students and Shubhajit wants to make
one team that comprises at least two students. The number of the ways the team can
be formed (choose one):
A. 45 B. 100 C. 1013 D. 1024 E. None of these.

8. From the alphabet A,B,C, · · · , Y, Z, we want to construct three-letter strings such
that letters are alphabetically ordered from the left with repetition allowed, and the
last letter is always Z. For example, BBZ and CMZ are valid strings, whereas MCZ
or CMY or CCY are not. The total number of such valid strings is (choose one):
A. 326 B. 650 C. 351 D. 300 E. 325
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Part-II

9. How many distinct positive divisors do each of the following numbers have: 620, 1010?

10. How many sets of 3 numbers each can be formed from the numbers {1, 2, 3, . . . , 10} if
no 2 consecutive numbers are to be in a set?

11. Prove that
(
n
r

)
=
(

n
n−r

)
by using a combinatorial argument.

12. Determine the number of 11-permutation of the multiset S = {3 · a, 4 · b, 5 · c}.

13. List all 3-combinations of the multiset S = {2 · a, 1 · b, 3 · c}.

14. How many integral solutions of x1+x2+x3+x4 = 30 satisfy x1 ≥ 2, x2 ≥ 0, x3 ≥ −5,
and x4 ≥ 8.

15. Consider the multiset S = {n · a, 1, 2, . . . , n} of size 2n. Show that the number of its
n-combinations is 2n.
Hint: (1 + 1)n =

∑n
k=0

(
n
k

)
16. Show that a nonempty set has the same number of odd subsets (i.e., subsets with an

odd number of elements) as even subsets.
Hint: 0 = (1− 1)n

17. What is the coefficient of x8y15 in the expansion of (3x− 2y)23?

18. Determine the value of the sum:
∑10

k=0

(
10
k

)
2k.

19. Show that
∑n

k=0(−1)k
(
n
k

)
3n−k = 2n.

20. Let h0, h1, h2, . . . , hn, . . . be the sequence of numbers satisfying: hn = hn−1+hn−2(n ≥
2), with h0 = 2 and h1 = −1. Show that hn =

√
5−2√
5
(1+

√
5

2
)n +

√
5+2√
5
(1−

√
5

2
)n is the

solution.

21. Consider the recurrence relation hn = 2hn−1 + hn−2 − 2hn−3(n ≥ 3), subject to the
initial values h0 = 1, h1 = 2, and h2 = 0. Show that hn = 2 − 2

3
(−1)n − 1

3
2n is the

solution.
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7.5 Problem Set 19 - Generating Functions

1. Given the following sequences, determine the corresponding generating function as a
summation and in closed form (as a formula).

(a) 1, 2, 3, 4, . . .

(b) 5, 4, 3, 0, 0, . . .

(c) 1,−1, 1,−1, 1,−1, . . .

(d)
(
10
10

)
,
(
11
10

)
,
(
12
10

)
,
(
13
10

)
, . . .

(e)
(
10
10

)
,−
(
11
10

)
,
(
12
10

)
,−
(
13
10

)
, . . .

(f) 1, 0, 1, 0, 1, . . .

(g) 1,−2, 4,−8, 16,−32, 0, 0, 0, . . .

2. Given the following generating functions, determine the sequence that represents it.

(a) f(x) = 0

(b) f(x) = x

(c) f(x) = 4 + 3x− 10x2 + 55x3

(d) f(x) = (3x− 4)3

(e) f(x) = 3x
1−x

(f) f(x) = 1
(1−3x)2

3. Determine the coefficient of the specified term in the expansion of the given function.

(a) x3 in 1
1−x

.

(b) x2 in 1
(1−2x)3

.

(c) x5 in (1−x5)
1−x

.

(d) x3 in 1
(1+3x)10

.

4. In how many ways can 1000 identical pamphlets be distributed to five different coun-
selling centers, where pamphlets are put in stacks of 50, such that each center receives
at least 50 but no more than 500 pamphlets?

5. In how many ways can 20 identical balls be distributed between 3 distinct boxes such
that, ...

(a) ... there are at least two balls assigned to box?

(b) ... there are at least three, but no more than 10 balls assigned to each box?

(c) ... using the same condition as in part b, how many distributions are possible if
there were 25 balls instead of 20?

6. Determine the number of ways that USD 12 in loonies can be distributed between
a father’s three children so that the eldest gets at least four dollars, the middle and
youngest child are both guaranteed at least two dollars, but the youngest cannot
receive any more than USD 5 since he will spend it all on candy and rot his teeth.

7. In how many ways can n balls be selected from a supply of pink, orange and black
balls such that the number of black balls selected must be even?
Hint: Partial fractions may come in handy.
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8. A restaurant just closed for the night and they had an extra 12 orders of fries and
16 mini-desserts left over. The restaurant manager decides to split this left over food
between the four employees closing that night. How can the manager do this so that
the head chef receives at least one order of fries and exactly three mini-desserts, while
the three other closing-staff are guaranteed at least two orders of fries but less than 5
desserts?

9. Use generating functions to determine the number of four-element subsets of the set
A, given by A := {1, 2, . . . , 15} that contain no consecutive integers.

10. A student is picking out a handful of gummy bears from a large container. There
are red, yellow, and green gummy bears in the container. The student wishes to pick
out an even number of red gummy bears, an odd number that is at least 3 of yellow
gummy bears, and either 4 or 6 green gummy bears.

(a) Determine the appropriate generating function that models this situation.

(b) How many ways can the student pick out gummy bears if they pick out:

i. 15? ii. 22?

11. Someone buys a chocolate bar and receives 50 cents in change. Create a generating
function that could determine the number of ways they could receive their change in
any combination of pennies, nickles, dimes, and quarters? The coefficient of which
term will give the desired solution?
Note: You are not being asked to determine how many ways this is possible.

12. A deck of cards has 52 cards in total. Half of the deck is red and half is black. A
quarter of the deck has the symbol hearts, a quarter has the symbol diamonds, a
quarter has the symbol spades, and a quarter has the symbol clubs. How many ways
are there to pick 15 cards if:

(a) You wish to pick an even number of black cards and an odd number of red cards?

(b) You wish to pick at least two of each symbol, but no more than 5 hearts and 6
spades?

13. Three students are running for student body president: Krishna, and Jamar, and
Bonnie. Find the generating function used to determine the possible distribution of n
students’ votes

(a) with no further restrictions?

(b) if every student running votes for themselves?

14. How many ways are there to obtain a sum of 7 if 2 distinct 6-sided dice, having faces
numbered 1, 2, 3, 4, 5, 6 are thrown?

41



ASSESSMENTS

8.1 Flash Quiz 01

1. Code the following two statements in propositional logic and then find the negation,
converse, inverse and contrapositive for each statement if applicable. If for any of the
statements the negation, converse, inverse or contrapositive is / are not possible to
apply to the question, mention the same. [2 * 5 = 10]

(a) To be in Gryffindor, it suffices that Harry is courageous.
(b) Every student of CS-1110-01 is rational.

Part (a)
p: Harry is courageous.
q: Harry is in Gryffindor.
Formal Statement: p→ q ≡ (¬p ∨ q)
Negation: ¬(¬p ∨ q) ≡ p ∧ ¬q
Converse: q → p
Inverse: ¬p→ ¬q
Contrapositive: ¬q → ¬p

Part (b)
P(x) : x is a student of CS-1110-01.
Q(x) : x is a rational.
Formal Statement: ∀x(P (x) → Q(x)) ≡ ∀x(Q(x) ∨ ¬P (x))
Negation: ¬(∀x(Q(x) ∨ ¬P (x)) ≡ ∃x(¬Q(x) ∧ P (x))
Converse: ∀x(Q(x) → P (x))
Inverse: ∀x(¬P (x) → ¬Q(x))
Contrapositive: ∀x(¬Q(x) → ¬P (x))

2. Formalise the following argument and use both Semantic Entailment and Resolution
to show its validity: [4 + 3 + 3 = 10]

• Premises

(a) It is not wintry or Rita has her jacket;
(b) Rita does not have her jacket or she does not catch a cold;
(c) It is wintry or Rita does not catch a cold.

• Conclusion: Rita does not catch a cold

Formalisation - 4 marks
p: it is wintry
q: Rita has her jacket
r: Rita catches a cold
premise 1: ¬p ∨ q
premise 2: ¬q ∨ ¬r
premise 3: p ∨ ¬r
conclusion: ¬r

Sematic Entailment - 3 marks
The complete truth table must consist of each of the three propositional variables, all
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three premises and the conclusion. The truth table must contain eight distinct rows.

Resolution - 3 marks

(¬p ∨ q) (p ∨ ¬r)
∴ (q ∨ ¬r)

(RES)
(¬q ∨ ¬r)

∴ ¬r
(RES)

which is “Rita does not catch a cold”.

3. Formalize the following using the given coded atomic statements. Justify the steps for
your final answer. [10]

For walking on the path to be safe, it is necessary but not sufficient that grapes not be
ripe along the path and for foxes not to have been seen in the area.

w: the walk along the path is safe.
f: there are foxes in the area.
g: the grapes are ripe.

The only correct answer:
[
w → (¬f ∧ ¬g)

]
∧ ¬
[
(¬f ∧ ¬g) → w

]
Reasoning: If seen as [ϕ] ∧ ¬[ψ], then the clause ϕ takes care of the ‘necessary’
condition and the clause ψ takes care of the ‘not sufficient’ condition imposed. Rest
of the formalisation is starightforward.
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8.2 Flash Quiz 02

1. Consider the recursive function T (n) = 4T (n/2) + 3 where T (1) = 1.
[5 + 10 = 15 marks]

(a) Unroll and find the closed form of this recursive function.

(b) Find (with proof) a Θ−bound for this function.

T (n) = 4T (n/2) + c

= 16T (n/4) + 4c+ c

= 64T (n/8) + 16c+ 4c+ c

= 256T (n/16) + 64c+ 16c+ 4c+ c

...

= 4kT (n/2k) + c ·
k−1∑
0

4i

Let n be such that, n/2k = 1. Then n = 2k and k = log2 n. Thus we get:
T (n) = 4log2 n + c(1 + 4 + 16 + 64 + · · ·+ 4log2 n−1)

⇒ T (n) = nlog2 4 + 3( (4
log2 n−1)
4−1

)

⇒ T (n) = n2 + 3(n
log2 4−1

3
)

⇒ T (n) = n2 + n2 − 1
⇒ T (n) = 2n2 − 1
Considering the given definition of Θ−bound, for c1 = 1, c2 = 3, n0 = 2 we have:

T (n) ∈ Θ(n2).

2. Show that log n! = O(n log n). [5 marks] 1 ≤ n; 2 ≤ n; 3 ≤ n; 4 ≤ n; · · · ; n ≤ n.
Thus we get :
1 · 2 · 3 · · · · n ≤ n · n · n · · · · n︸ ︷︷ ︸

n times

⇒ n! ≤ nn.
⇒ log n! ≤ n log n.
Thus for c = 1 and n0 = 1 we have log n! = O(n log n).
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8.3 Flash Quiz 03

1. Let A and B be two mutually disjoint events. Further, let A and B be events inde-
pendent of event C. If P[A] + P[B] = a and P[C] = b, and P realises the uniform
probability distribution then compute P[A ∪B ∪ C]. [6 marks]
ANSWER : a+ b− ab.
Let Ω be the sample space. We consider the Inclusion-Exclusion Principle:

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |B ∩ C| − |C ∩ A|+ |A ∩B ∩ C|

=⇒ |A ∪B ∪ C|
|Ω|

=
|A|
|Ω|

+
|B|
|Ω|

+
|C|
|Ω|

− |A ∩B|
|Ω|

− |B ∩ C|
|Ω|

− |C ∩ A|
|Ω|

+
|A ∩B ∩ C|

|Ω|
...due to P being the Uniform probability distribution...

=⇒ P[A ∪B ∪ C] = P[A] + P[B] + P[C]− P[A ∩B]− P[B ∩ C]− P[C ∩ A] + P[A ∩B ∩ C]
=⇒ P[A ∪B ∪ C] = a+ b− 0− ab+ 0

=⇒ P[A ∪B ∪ C] = a+ b− ab.

2. Consider probability distribution P1 : Ω → [0, 1] and P2 : Ω → [0, 1] on a non-empty
sample space Ω. Show that [4 marks]∑

ω∈Ω

|P1(ω)− P2(ω)| ≤ 2.

Due to the Triangle inequality: |a+ b| ≤ |a|+ |b|, we have:∑
ω∈Ω

|P1(ω)− P2(ω)| ≤
∑
ω∈Ω

|P1(ω)|+ |P2(ω)|

=
∑
ω∈Ω

|P1(ω)|+
∑
ω∈Ω

|P2(ω)|

= 2 [since each are probability distributions.]

This completes the proof. qed

3. Consider the joint random variable (X, Y ) with domain {0, 1}×{0, 1, 2}, corresponding
to some random variables X and Y . It is given P(X,Y )[(a, b)] =

a+b
9
, ∀(a, b) ∈ {0, 1} ×

{0, 1, 2}.

(a) Determine marginal distributions PX and PY . [7 marks]

(b) Are random variables X and Y independent? [3 marks]

(a) We have PX [x0] =
∑

t∈{0,1,2} P(X,Y )[(x0, t)] and PY [y0] =
∑

s∈{0,1} P(X,Y )[(s, y0)].
Thus,

• PX [0] =
0+0
9

+ 0+1
9

+ 0+2
9

= 1/3.

• PX [1] =
1+0
9

+ 1+1
9

+ 1+2
9

= 2/3.

• PY [0] =
0+0
9

+ 1+0
9

= 1/9.

• PY [1] =
0+1
9

+ 1+1
9

= 1/3.

• PY [2] =
0+2
9

+ 1+2
9

= 5/9.

(b) No. If random variable X and Y are independant, than we have

P(X,Y )[(a, b)] = PX [a]× PY [b], ∀(a, b) ∈ {0, 1} × {0, 1, 2}.

Here, P(X,Y )[(0, 0)] ̸= PX [0]× PY [0]. Thus, X and Y are not independant.
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8.4 Flash Quiz 04

1. Proof that if a simple undirected graph G is Euler, then any degree sequence of G
must be comprised of even natural numbers only. [8 marks]

Proof. Since G is Euler, let one of its Eulerian cycle be of the following form:

[x0
e0−→ x1

e1−→ x2
e2−→ . . .

en−1−−→ xn
en−→ x0].

with possible repetition amongst the vertices xi, but not amongst the edges ei. Arbi-
trarily, pick a vertex x. For this vertex x, there must be two distinct edges e1 = {a, x}
and e2 = {y, b}. Hence, for each vertex x, if there is one edge incident on it, then
there is one edge to outgoing from it too. Each such pairing introduces 2 to deg(x),
so deg(x) is even. Since vertex x was chosen arbitrarily, the proof is complete.

2. Consider the disconnected graph G given the following figure. Draw the graph G1

after adding the minimum number of edges in G so that the result becomes a simple
Euler Graph. Justify your answer. [3 marks]

1

2

3

4

5

6

7

G

1

2

3

4

5

6

7

G1

We use the result we have proved in Question 1 to identify that vertices 2, 3, 5, 6 are
the only vertices with odd degrees. Further, for a graph to be Euler, it is necessary
that it is connected. These leads to the above given G1. Observe that, one can also
come up with an existential proof, nevertheless in all scenarios G1 remains
unique!

3. Solve the following recurrence relations and write their closed forms where n ∈ N:

(a) an = 6an−1 − 9an−2, ∀n ≥ 2. Given a0 = 1, a1 = 6. [3 marks]
an = (1 + n) · 3n.
The characterisitic equation in this case is : r2 − 6r + 9 = 0.

(b) an = 7an−1 − 12an−2, ∀n ≥ 2. Given a0 = 5, a1 = −5. [3 marks]
an = 25 · 3n − 20 · 4n.
The characterisitic equation in this case is : r2 − 7r + 12 = 0.

(c) an = 4an−1 − 4an−2, ∀n ≥ 3. Given a1 = 1, a2 = 3. [3 marks]
an = (1 + n) · 2n−2.
The characterisitic equation in this case is : r2 − 4r + 4 = 0.
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8.5 Quiz 01

Question 01 [4 + 6 = 10 marks]
Solve the following ‘Exciting Life Problem’ using natural deduction.

Those people who read are not stupid. Poulomi can read and is wealthy. All people who are
not poor and are smart are happy. Happy people have exciting lives. Can anyone be found
with an exciting life?

1. Formalize the statements into a set of logical clauses.
2. Provide a correct and complete proof by natural deduction.

Answer to Question 01

▶ Set of Predicates

READ(x) : x reads
SMART(x) : x is smart (also, x is not stupid)
WEALTHY(x) : x is wealthy (also, x is not poor)
HAPPY(x) : x is happy
EXCITING(x) : x has an exciting life

1. Formalisation The above statements become the following when formalised.

• ∀x
(
READ(x) → SMART(x)

)
•

(
READ(Poulomi) ∧ WEALTHY(Poulomi)

)
• ∀x

((
WEALTHY(x) ∧ SMART(x)

)
→ HAPPY(x)

)
• ∀x

(
HAPPY(x) → EXCITING(x)

)
2. Natural Deduction Each of the above formalised statements become premises. For

obvious reasons this proof is not unique. Yes, there is someone with an exciting
life.

1. ∀x
(
READ(x) → SMART(x)

)
premise.

2.
(
READ(Poulomi) ∧ WEALTHY(Poulomi)

)
premise.

3. ∀x
((
WEALTHY(x) ∧ SMART(x)

)
→ HAPPY(x)

)
premise.

4. ∀x
(
HAPPY(x) → EXCITING(x)

)
premise.

5.
(
READ(Poulomi) → SMART(Poulomi)

)
Universal Instantiation of 1.

3.
((
WEALTHY(Poulomi) ∧ SMART(Poulomi)

)
→ HAPPY(Poulomi)

)
Universal Instantiation of 3.

6.
(
HAPPY(Poulomi) → EXCITING(Poulomi)

)
Universal Instantiation of 4.

7. WEALTHY(Poulomi) Simplification or ∧e,2 2.
8. READ(Poulomi) Simplification or ∧e,1 2.
9. SMART(Poulomi) Modus Ponens on 5, 8.
10. WEALTHY(Poulomi) ∧ SMART(Poulomi) Conjunction or ∧i 7, 9.
11. HAPPY(Poulomi) Modus Ponens on 3, 10.
12. EXCITING(Poulomi) Modus Ponens on 6, 11.

13. ∃x
(
EXCITING(x)

)
(conclusion) Existantial Instatiation of 12.

– OR –
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Question 02 [5 + 5 = 10 marks]
Solve the following mandatory sub-parts.

a. Let ϕ = ∃x(P (y, z) ∧ (∀y(¬Q(y, x) ∨ P (y, z)))). Consider the terms t1 = w (w is a
variable), t2 = f(x) and t3 = g(y, z), where f and g are function symbols with arity 1
and 2 respectively.

i. Compute ϕ[t1/x], ϕ[t1/y].

ii. Which of the terms t2, t3 are free for x in ϕ.

iii. Which of the terms t2, t3 are free for y in ϕ.

[Hint: Scope of ∃x in ϕ is P (y, z)]

b. Consider the predicate formula ϕ given by

ϕ := ∀x (P (x) → Q(x, f(x))),

where P and Q are predicates and f is a function symbol. Suppose we fix the domain
of discourse or the ground set Ω = {000, 001, 010, 011, 100, 101, 110, 111}. Define P,Q
and f such that ϕ is true.

[Hint: Appropriate subset of Ω for P , Q stays same; and f reverses! Palindrome -
that reads the same forward and backward!]

Answer to Question 02

a. Here, we have the following logical compound statement.

ϕ = ∃x
(
P (y, z)︸ ︷︷ ︸

I

∧
(
∀y(¬Q(y, x)︸ ︷︷ ︸

II

∨P (y, z)︸ ︷︷ ︸
III

)
))

x ... II and III are scope of the quantifier ∀y in ϕ, so x is free in II.
y ... Since I is the scope of the quantifier term ∃x in ϕ, y is free in I and binded in
II, III.
z ... ϕ has no quantifier on z, hence z is free throughout ϕ.

i. ϕ[t1/x] = ∃x(P (y, z) ∧ (∀y(¬Q(y, w) ∨ P (y, z)))),
ϕ[t1/y] = ∃x(P (w, z) ∧ (∀y(¬Q(y, x) ∨ P (y, z)))).

ii. t2 — t2 is free for x in ϕ; t3 is not free for x in ϕ.

iii. t3 — t2 is not free for y in ϕ; t3 is free for y in ϕ.

b. Although the following is a natural answer, there might be other correct answers too!

P (x) : x ∈ {000, 010, 101, 111}
Q(x, y) : x = y as strings.

f(x) :
the bit-reversal function (since we only have
3-bit binary strings here, under f the first bit
gets replaced by the third and the third by first bit).
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Question 03 [5 + 5 = 10 marks]
Solve the following questions.

a. Prove using the principle of mathematical induction that n3 + 2n is divisible by 3 for
all n ∈ N, n ≥ 1.

b. Rudransh has a stock of Rs. 2/- notes and Rs. 5/- notes, only. Prove using the prin-
ciple of mathematical induction, that Rudransh can dispense any amount of money,
say Rs. x, where x is a positive integer ≥ 4, using these two denominations.
[Hint: The statement to be proved is as follows: For all n ≥ 4, there exists a, b ∈
(N ∪ {0}) such that n = 2a+ 5b.]

Answer to Question 03

a. We need to prove that ∀n ∈ N, P (n) : 3 | n3 + 2n.
BASE CASE: (1)3 + 2(1) = 3, which clearly is divisible by 3.
INDUCTIVE HYPOTHESIS: We assume, for some k ∈ N and k > 1, P (k) is
true.
INDUCTIVE STEP: We inspect the formulation for k + 1 ∈ N.

(k + 1)3 + 2(k + 1) = (k + 1)[(k + 1)2 + 2]

= (k + 1)[k2 + 2k + 3]

= (k + 1)[3m+ 3] [using IH, where m ∈ N]
= 3(k + 1)(m+ 1).

Therefore, for any k ∈ N, P (k + 1) holds whenever P (k) is true. This completes the
proof by induction. qed.

b. We need to prove that ∀n ∈ N and n ≥ 4, P (n) : ∃n1, n2 ∈ N∪ {0} ∋ n = 2n1 + 5n2.
BASE CASE: Observe P (4) holds where n1 = 2 and n2 = 0.
INDUCTIVE HYPOTHESIS: We assume, for some k ∈ N and k > 4, P (k) is
true.
INDUCTIVE STEP: We inspect the formulation for k + 1 ∈ N. Due to the IH we
have, ∃m1,m2 ∈ N ∪ {0} ∋ k + 1 = 2m1 + 5m2 + 1.

i. CASE I : k + 1 is even.
Observe that any even integer greater
than 4 will have at least two 2s in-
volved in its sum. Basically any even
integer greater than 4 can be written
as 4 + p, where p is an appropriate
positive integer.

k + 1 = 2m1 + 5m2 + 1

= 2(n1 + 2) + 5m2 + 1

= 2n1 + 5m2 + 5

= 2n1 + 5(m2 + 1)

= 2n1 + 5n2

ii. CASE II : k + 1 is odd.
Observe that any odd integer greater
than 4 will have at least one 5s in-
volved in its sum. Basically any odd
integer greater than 4 can be written
as 5 + q, where q is an appropriate
positive integer.

k + 1 = 2m1 + 5m2 + 1

= 2m1 + 5(n2 + 1) + 1

= 2m1 + 5n2 + 6

= 2(m1 + 3) + 5n2

= 2n1 + 5n2

Therefore, for any k ∈ N, P (k + 1) holds whenever P (k) is true. This completes the
proof by induction. qed.
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Question 04 [2 + 5 + 8 = 15 marks]
Welcome to the ‘Game of Logic’ which has the following two assumptions:

i. Logic is difficult or not many students like logic.
ii. For logic to be not difficult it is sufficient that mathematics is easy.

Formalise the above two assumptions (2 marks) and then answer the following questions
on logical argument by considering these two assumptions to be two premises. The first and
second assumption becomes premise 1 and premise 2 respectively.

a. Consider “Mathematics is not easy, if many students like logic”, to be the conclusion
and show that the argument premise 1, premise 2 ⊢ conclusion is valid.

[1 + 4 = 5 marks]

b. Consider “Not many students like logic, if mathematics is not easy.”, to be the conclu-
sion and show that the argument premise 1, premise 2 ⊨ conclusion is not valid.

[1 + 7 = 8 marks]

Answer to Question 04

▶ Formalisation

p : logic is difficult
q : mathematics is easy
r : many students like logic

a. To prove : (p ∨ ¬r); (q → ¬p) ⊢ (r → ¬q).

1. p ∨ ¬r ... premise
2. q → ¬p ... premise
3. ¬r ∨ p ... Equivalent to 1.
4. r → p ... Definition of →
5. p→ ¬q ... Contrapositive of 2.
6. r → ¬q ... Hypothetical Syllogism on 4. & 5. [conclusion ]

b. To prove : (p ∨ ¬r); (q → ¬p) ⊭ (¬q → ¬r).

. p q r
(p ∨ ¬r)
premise

(q → ¬p)
premise

(¬q → ¬r)
conclusion

1. F F F T T T
2. F F T F T F

...
...

...
...

...
...

6. T F T T T F

In the last row of the Truth Table above, for a certain combination of semantic values
of the propositional variables, all both the premises are TRUE but the conclusion is
FALSE. Hence, the proof by semantic entailment is complete. qed.

▶ You can use the code in ‘semantic entailment 01.c’ uploaded in the Google Classroom
to verify the above proof.
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– OR –

Question 05 [5 + 5 + 5 = 15 marks]
Solve the following mandatory sub-parts.

a. The table below represents the complete truth table for some propositional formula ϕ
involving three propositional variables: p, q and r. Provide an example of a formula ϕ
in conjunctive normal form (CNF) whose truth table matches the given one.

p q r ϕ
F F F F
F F T T
F T F F
F T T T
T F F F
T F T T
T T F T
T T T T

b. The following is a proof of the sequent p ∨ q,¬q ∨ r ⊢ p ∨ r. Carefully examine the
proof and identify the each of the inference rules used below and labelled as Rule 1
through Rule 5. If any of these rules involve an assumption, explicitly state so.

1. p ∨ q ... premise
2. ¬q ∨ r ... premise
3. p ... Rule1
4. p ∨ r ... Rule2

5. q ... Rule3
6. ¬¬q ... Rule4
7. r ... Rule5

8.
...

...

[Hint: p1∨p2, ¬p1
p2

DS (Disjunctive Syllogism)]

c. Consider the following statement and express it as a predicate formula using appro-
priate predicates. The numbers a and b should be treated as constants.

The numbers a and b are bigger than their common factors.

Answer to Question 05

a. An answer is ϕ = (p∨q∨r) ∧ (p∨¬q∨r) ∧ (¬p∨q∨r), this can be made compact.
Step 1 Identify rows where ϕ is False.
Step 2 To ensure ϕ is False in the rows identified above, we construct clauses that
eliminate these cases. Each clause must be False in at least one of the rows where ϕ
is False. For each row where ϕ is False, we construct a clause which is False only in
that row. So we get clauses (p ∨ q ∨ r), (p ∨ ¬q ∨ r) and (¬p ∨ q ∨ r).
Step 3 Combine the above clauses using conjunction. This formula ensures that ϕ is
False in exactly the rows where ϕ = False in the given truth table, and True otherwise.
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b. Rule1 is assumption.
Rule2 is introduction of disjunction on 3 or ∨i1 3 or addition on 3.
Rule3 is assumption.
Rule4 is introduction of double-negation on 5 or ¬¬i 5.
Rule5 is disjunctive syllogism on 2, 6.

c. C(x) : x is a common factor of a and b
G(x,y) : x is greater than y

Encoding : ∀x
(
C(x) → (G(a, x)) ∧G(b, x)

)
.
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8.6 Quiz 02

Question 01 [5 marks]
Prove that: A natural number n is composite if and only if it is divisible by a natural number
less than or equal to

√
n.

Answer to Question 01

(⇒) We need to prove that: if n is divisible by a natural number less than or equal to
√
n,

then n is composite. Whenever ∃a ∈ N such that

a|n ∧ a ≤
√
n

=⇒ a|n ∧ a < n.

By definition it follows that, n is a composite.
(⇐) We need to prove that: if n is composite, then n is divisible by a natural number less

than or equal to
√
n. Since n is composite, ∃a ∈ N, 1 < a < n such that a|n. Here we

have either of the following two cases:

a2 = n ∨ a · b = n . . . . . . for some b ∈ N
=⇒ a =

√
n ∨ a · a < a · b = n . . . . . .wlog a < b

=⇒ a =
√
n ∨ a2 < n

=⇒ a =
√
n ∨ a <

√
n.

Hence, a is the required divisor of n which is less than or equal to
√
n.

This completes the proof. qed

Question 02 [5 marks]
Prove that: For finite sets A, B, there exists a function f : A ∩ B → A ∪ B such that f is
injective.

Answer to Question 02
Here, we can provide an existential proof. For arbitrary but non-empty sets A,B, we always
have (A ∩B) ⊆ (A ∪B). Consider f : (A ∩B) → (A ∪B) to be the identity function.
For x1, x2 ∈ A ∩B f(x1) = f(x2) =⇒ x1 = x2, hence this considered f is injective.
This completes the proof. qed

Question 03 [5 marks]
Let {0, 1}n be the set of all binary strings of exactly length n. Define a function f : {0, 1}n →
Z such that:

1. f(w) ̸= 0 for all w ∈ {0, 1}n, and
2.
∑

w∈{0,1}n f(w) = 0.

Answer to Question 03
The function f : {0, 1}n → Z can be defined as follows:

f(w) =

®
1, if w ∈ {0, 1}n starts with 0,

−1, if w ∈ {0, 1}n starts with 1.
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Note that there can be other correct answers too!

Question 04 [5 marks]
Consider the function f : Z → Z defined as f(x) = x2. Let A = {0, 1, 22, 32, . . . , n2} and
B = {0, 1, 22, 32, . . . , n2, (n+1)2} for some fixed n ∈ N. Determine the set f−1(A)∆f−1(B).

▶ Notation: ∆ denotes the set symmetric difference.

Answer to Question 04
Note that the given function f is not necessarily an injection. Hence we have:

f−1(A) = {−n, −n+ 1, . . . , −1, 0, 1, . . . , n− 1, n}
f−1(B) = {−n− 1, −n, −n+ 1, . . . , −1, 0, 1, . . . , n− 1, n, n+ 1}

Note that f−1(A) ⊂ f−1(B). Hence we have:

f−1(A)∆f−1(B) =
(
f−1(A) ∪ f−1(B)

)
\
(
f−1(A) ∩ f−1(B)

)
= f−1(B) \ f−1(A)

= {−n− 1, n+ 1}

∴ f−1(A)∆f−1(B) = {−n− 1, n+ 1}

Question 05 [5 marks + 1 bonus]
Consider the following function f defined on the set {0, 1}n as: for x ∈ {0, 1}n, f(x) = wt(x),
where wt(x) denotes the number of 1’s in the string x.

1. Determine the range of f

2. Is f injective ?

3. Determine f−1(1).

4. Determine the size of f−1(A) where A = {1, n}.

Answer to Question 05

1. There can be n−bit binary string which can have no 1s, one 1, two 1s and so on until
the case where the string has all n bits to 1. Hence, Range(f) = {0, 1, 2, . . . , n}.

2. Clearly, f(1000 . . . 0) = f(0000 . . . 1) = 1. Hence, f is not injective.

3. For i = 1, 2, 3, . . . , n, we define wi := {x | x ∈ {0, 1}n ∧ only the ith bit in x is 1}.
Observe, that ∀x ∈ {0, 1}n, f(x) = 1 if and only if x = wi. Hence, f

−1(1) = {wi | i =
1, 2, 3, . . . , n}.

4. Since A = {1} ∪ {n} and {1} and {n} are disjoint subsets of N we have,
f−1(A) = f−1({1})∪f−1({n}). Since, f−1({n}) = {111 · · · 11} continuing from part(3)
we have

f−1(A) = {wi | i = 1, 2, . . . , n} ∪ {111 · · · 11}.
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Question 06 [5 marks]
Consider the following recurrence

f(n) =

®
1 if n = 1

m · f(n− 1) if n ≥ 2
,

where m ∈ N is a fixed natural number. Determine a closed form expression for f .

Answer to Question 06
First of all, we perform unrolling to claim a closed form for f .

f(n) = m · f(n− 1)

= m[m · f(n− 2] = m2 · f(n− 2)

= m3 · f(n− 3)

= m4 · f(n− 4)

...

= mk · f(n− k)

= mn−1 · f(1) = mn−1 [substitution n− k = 1]

So, after performing unrolling we claim that the closed form of f is f(n) = mn−1. Now we
use induction to prove our claim.

BASE CASE : m1−1 = 1 = f(1). Hence, the claim is valid for the base case.

IH : We assume that ∃k ∈ N such that f(k) = mk−1.

Inductive Step : f(k + 1) = m · f(k) = m
(
mk−1︸ ︷︷ ︸
IH

)
= m(k+1)−1.

This completes the proof and the determined closed form is f(n) = mn−1.

Question 07 [5 marks]
Determine the number of functions

f : {1, 2, 3, 4, 5, 6} → {1, 2, 3, 4, 5, 6}

such that f(1) = 2.

Answer to Question 07
For each n = 2, 3, 4, 5, 6 observe that f(n) has 6 mapping possibilities to the elements in the
given codomain. Hence, the required number of plausible functions is 65.

OR
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Question 08 [2 + 2 + 1 = 5 marks]
The Set Symmetric Difference ∆ is defined as follows:

A∆B = (A ∪B) \ (A ∩B).

1. What can be said about sets A and B if A∆B = A?

2. What can be said about sets A and B if A∆B = A \B?

3. For any non-empty set A, what is A∆A?

▶ Notation: A \B denotes A set minus B.

Answer to Question 08

1. B = ϕ.
We have A∆B = A. It follows that

(A ∪B) \ (A ∩B) = A

=⇒ (A ∪B) ∩ (A ∩B)c = A

=⇒ (A ∪B) ∩ (Ac ∪Bc) = A . . . (De Morgan′s Law)

=⇒
(
(A ∪B) ∩ Ac

)
∪
(
(A ∪B) ∩Bc

)
= A . . . (Distributive Law)

=⇒ (B ∩ Ac)︸ ︷︷ ︸
I

∪ (A ∩Bc)︸ ︷︷ ︸
II

= A . . . (on simplifying)

Since, I ⊆ Ac and II ⊆ A we have:

I = ϕ ∧ II = A

=⇒ B = ϕ.

2. B ⊆ A.
We have A∆B = A. It follows that

(A ∪B) \ (A ∩B) = A \B
=⇒ (A ∪B) ∩ (A ∩B)c = A \B
=⇒ (A ∪B) ∩ (Ac ∪Bc) = A \B . . . (De Morgan′s Law)

=⇒
(
(A ∪B) ∩ Ac

)
∪
(
(A ∪B) ∩Bc

)
= A \B . . . (Distributive Law)

=⇒ (B ∩ Ac)︸ ︷︷ ︸
I

∪ (A ∩Bc)︸ ︷︷ ︸
II

= A \B . . . (on simplifying)

Since, I ⊆ Ac and by definition II = A \B we have:

I = ϕ

=⇒ Ac ∩B = ϕ

=⇒ B ⊆ A.

3. ϕ.

A∆A = (A ∪ A) \ (A ∩ A)
= A \ A
= A ∩ Ac

= ϕ.
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8.7 Quiz 03

Question 01 [5 + 3 + 4 + 3 = 15 marks]

1. Show that if f(n) = n2 log2 n − 5n2 + 3n log2 n, then for c1 = 1/2 and c2 = 3, there
exists n0 ∈ N such that for all n ≥ n0, we have

c1 · n2 log2 n ≤ f(n) ≤ c2 · n2 log2 n.

Determine the smallest computable value of n0, so that the above inequalities establish
f(n) is Θ(n2 log2 n).

First Inequality: c1·n2 log2 n ≤ f(n).
It suffices to show that,
1
2
n2 log2 n ≤ n2 log2 n− 5n2,

implies that 1/2 ≤ 1− 5
log2 n

.

Solving further we get 210 ≤ n. Thus
n1 = 1024.

Second Inequality: f(n) ≤ c2·n2 log2 n.
∀n ≥ 1, we have n2 log2 n ≤ n2 log2 n;
−5n2 ≤ n2 log2 n and 3n log2 n ≤ n2 log2 n.
Adding these we get, f(n) ≤ 3·n2 log2 n,
where n2 = 1

Considering both calculations above, we get n0 = max{n1, n2} = 1024.

2. If f(n) = log2(n!) + n2 log2 n, then determine whether f(n) is O(n log2 n). Provide a
clear justification.

[Hint: If f1 ∈ O(g) and f2 ∈ O(g), then f1 + f2 ∈ O(g).]
Forall n ∈ N we have n! ≤ nn =⇒ log2(n!) ≤ n log2 n. Thus, we have the result
log2(n!) ∈ O(n log2 n) for c = 1;n0 = 1. Further note that for all n ∈ N, we have
n log2 n < n2 log2 n, leading to the fact that n2 log2 n can never be O(n log2 n).
Proof by contradiction : Suppose log(n!) + n2 log n = O(n log n).
Hence n2 log n = O(n log n)− log(n!). As log(n!) ∈ O(n log n), it follows that n2 log n
is O(n log n), which is a contradiction.

3. Show that if f(n) = log2 n and g(n) = n1/4, then f(n) cannot be Ω
(
g(n)

)
.

We claim that log2 n ∈ o(n1/4). Consider

lim
n→∞

log2 n

n1/4
= lim

n→∞

k · 1/n
1/n3/4

[L’Hôpital’s rule]

= lim
n→∞

4k

n1/4
= 0.

∴ log2 n ∈ o(n1/4) . . . claim proved.

By first principle, log2 n ∈ o(n1/4) implies that

∀c > 0, ∃ n0 > 0 s.t. ∀n > n0 |log2 n| ≤ c · |n1/4|
=⇒ ∀c > 0, ∃ n0 > 0 s.t. ∀n > n0 log2 n ≤ c · n1/4 (1)

Proof by contradiction : Let us assume that log2 n ∈ Ω(n1/4). It follows that(
∃c > 0, ∃n0 > 0 s.t. ∀n > n0 log2 n ≥ c · n1/4

)
. But this is a clear contradiction to

inference (1) derived above. So our assumption is incorrect and hence log2 n can never
be Ω

(
n1/4

)
. qed

4. Show that if f(n) = n
3

log2 n , then f(n) is O(1).

f(n) = n
3

log2 n = n3·logn 2 = 23. Clearly, for ∀n ≥ n0 where n0 = 1 and c = 10 we have
f(n) ≤ c · 1. Hence, f(n) ∈ O(1). qed
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OR

Question 02 [5 + 5 + 5 = 15 marks]
For some fixed n ∈ N, p(x) : R → R defined as p(x) = anx

n + an−1x
n−1 + · · · + a1x + a0 is

called a real-valued n-degree polynomial, where ai ∈ R for all i = 1, 2, . . . , n.

For the following three questions consider the cost of binary multiplication a * b to be
O(1), and ignore any complexity due to any binary addition, variable increment and variable
initiation.

1. The conventional algorithm for evaluating a polynomial p(x) = anx
n + an−1x

n−1 +
· · ·+ a1x+ a0 at x = c can be expressed in the following pseudocode (Algorithm-I) :

Algorithm-I

1: procedure eval.polynomial(c, a0, a1, . . . , an: reals)
2: y := 0 ▷ initiation
3: for i := 1 to n do
4: power := 1 ▷ initiation
5: for j := 1 to i do
6: power = power ∗ c
7: end for
8: y := y + ai ∗ power
9: end for

10: return y ▷ y = anc
n + an−1c

n−1 + · · ·+ a1c+ a0
11: end procedure

(a) What is the total number of multiplications and additions done by this algorithm
to evaluate a n-degree polynomial p(x) at a given point x = c?
The multiplication at line 6 is happening once for each iteration of the loop at
line 5. Further for each iteration of the loop at line 3, the loop at line 5 is
restarting and the multiplication at line 8 is happening once.
The addition at line 8 is happening one for each iteration of the loop at line
3. Hence we have,

total no. of multiplications = (1 + 1) + (2 + 1) + (3 + 1) + · · ·+ (n+ 1)

=
n∑

i=1

i+ n =
n2 + 3n

2
,

total no. of additions = n.

(b) What is the complexity of this conventional algorithm (Algorithm-I) in Θ-bound?
Since binary multiplication is the only cost inducing operation, observe that ∀n ≥
1 we have

1

10
n2 ≤ 1

2
n2 +

3

2
n ≤ 2n2.

Hence, complexity of Algorithm-I is Θ
(
n2
)
.

2. The Horner’s method of evaluating a polynomial p(x) = anx
n + an−1x

n−1 + · · · +
a1x+ a0 at x = c can be expressed in the following pseudocode (Algorithm-II) :

58



Algorithm-II

1: procedure horner(c, a0, a1, . . . , an : reals)
2: y := an ▷ initiation
3: for i := 1 to n do
4: y = y ∗ c+ an−i

5: end for
6: return y ▷ y = anc

n + an−1c
n−1 + · · ·+ a1c+ a0

7: end procedure

(a) What is the total number of multiplications and additions done by this algorithm
to evaluate a n-degree polynomial p(x) at a given point x = c?
Both the multiplication and the addition at line 4 is happening once for each
iteration of the loop at line 3. Hence we have,

total no. of multiplications = n,

total no. of additions = n.

(b) What is the complexity of this Horner’s algorithm (Algorithm-II) in Θ-bound?
Since binary multiplication is the only cost inducing operation, observe that ∀n ≥
1 we have

1

2
n ≤ n ≤ 2n.

Hence, complexity of Algorithm-II is Θ
(
n
)
.

3. An optimised algorithm for evaluating a polynomial p(x) = anx
n + an−1x

n−1 + · · · +
a1x+ a0 at x = c can be expressed in the following pseudocode (Algorithm-III) :

Algorithm-III

1: procedure eval.polynomial(c, a0, a1, . . . , an : reals)
2: power := 1 ▷ initiation
3: y := a0 ▷ initiation
4: for i := 1 to n do
5: power = power ∗ c
6: y = y + a1 ∗ power
7: end for
8: return y ▷ y = anc

n + an−1c
n−1 + · · ·+ a1c+ a0

9: end procedure

(a) What is the total number of multiplications and additions done by this algorithm
to evaluate a n-degree polynomial p(x) at a given point x = c?
Observe that for each iteration of the loop at line 4, we have two multiplications
(one each from line 5 and line 6) and one addition (line 6). Hence we have,

total no. of multiplications = 2n,

total no. of additions = n.
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(b) What is the complexity of this optimised algorithm (Algorithm-III) in Θ-bound?
Since binary multiplication is the only cost inducing operation, observe that ∀n ≥
1 we have

n ≤ 2n ≤ 3n.

Hence, complexity of Algorithm-III is Θ
(
n
)
.

Question 03 [10 marks]
Consider the problem Selectn,i described as follows:

Selectn,i
Input: An n-size array B of distinct integers; An i in 1 ≤ i ≤ n
Output: The ith smallest element in B

Suppose we have an algorithm A that finds the smallest element in a given array of integers,
i.e., A is an algorithm for solving Selectn,1. Using A, we can design an algorithm A′ to solve
Selectn,i as follows:

Algorithm A′

1: for j := 1 to i do
2: Find aj by running A on B
3: Remove aj from B
4: end for
5: return ai

Show that if f(n) = n − 1 is the computational complexity of A for solving Selectn,1, then

computational complexity of A′ is 2ni−i2−i
2

.
The removal operation at line 3 has no cost, but it reduces the size of array B by 1 in each
iteration of the loop at line 1. The mechanics of the operation at line 1 in the loop at
line 1 is as follows:

Iteration no. Size of problem at line 2 Cost, i.e., f(size)

1 n n− 1
2 n− 1 n− 2
3 n− 2 n− 3
...

...
...

i n− i+ 1 n− i

Thus the total cost of A′ gives its complexity to be

(n− 1) + (n− 2) + · · ·+ (n− i) =
2ni− i2 − i

2
.

Question 04 [10 marks]
Draw a recursion tree table for the following function, in the format given below.

f(n) =

®
8f(n/2) + n3 if n ≥ 2

1 if n = 1
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Use the table to show that f(n) = Θ(n3 log n). Assume n is always a power of 2.

Format for Recursion Tree Table

Level No. of subproblems Size of subproblems Cost per subproblem Cost per level

Observe that the given recurence unrolls as follows:

f(n) = 8 · f(n/2) + n3

8 · f(n/2) = 64 · f(n/4) + 8 · (n/2)3

64 · f(n/4) = 512 · f(n/8) + 64 · (n/4)3
...

...

8k · f(n/2k) = 8k+1 · f(n/2k+1) + 8k · (n/2k)3.
For the given recurence we the following at level k:

8k · f(n/2k︸︷︷︸
II

) = 8k+1 · f(n/2k+1) +

IV︷ ︸︸ ︷
8k︸︷︷︸
I

· (n/2k)3︸ ︷︷ ︸
III

.

I : no. of subproblems
II : size of subproblems
III : cost per subproblems
IV : cost per level = no. of subproblems × cost per subproblems

Level No. of subproblems Size of subproblems Cost per subproblem Cost per level

0 1 n n3 1 · n3

1 8 n
2

(
n
2

)3
8 ·
(
n
2

)3
= n3

2 82 n
4

(
n
4

)3
82 ·

(
n
4

)3
= n3

3 83 n
8

(
n
8

)3
83 ·

(
n
8

)3
= n3

...
...

...
...

...

log2 n 8log2 n = n3 n
2log2 n = 1

(
n

2log2 n

)3
= 1 8log2 n ·

(
n

2log2 n

)3
= n3

The required recursion tree table.

Using the table above, we get the total cost of the recurence

= n3 + 8 ·
(n
2

)3
+ 82 ·

(n
4

)3
+ · · ·+ 8log2 n ·

( n

2log2 n

)3
= n3 ·

ñ
1 + 8 ·

Å
1

2

ã3
+ 82 ·

Å
1

4

ã3
+ · · ·+ 8log2 n ·

Å
1

2log2 n

ã3ô
= n3 ·

[
1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸

log2 n + 1 times

]
= n3 · log2 n + n3

= Θ(n3 log2 n) . . . . . . [c1 = 1, c2 = 5;n0 = 3]
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8.8 Quiz 04

Question 01 [10 marks]
Let Ω = {0, 1}4 be the set of all binary strings of length 4. Consider the experiment of
generating binary strings of length 4 which realises the uniform probability distribution. Let
A ⊆ Ω be the event that the generated binary string starts with 1 and B ⊆ Ω be the event
that the generated binary string contains even number of 1s. Under the assumption that
appearances of 0s and 1s are independant and uniform, determine whether A and B are
independant or not.
▶ Note: The string 0000 is considered as having even number of 1-bits.
Answer: yes.
|Ω| = 24 = 16;
A = {1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111} and P[A] = 1/2;
B = {0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111} and P[B] = 1/2;
A ∩B = {1001, 1010, 1100, 1111} and P[A ∩B] = 1/4.
Since P[A] · P[B] = P[A ∩B], we have events A and B to be independant.

OR

Question 02 [5 + 5 = 10 marks]

1. It is given that A,B,C are pairwise independent, with P[A] = P[B] = P[C] = 1/2.
Further if events A and B ∪ C are also independent, then compute P[A ∩ (B ∪ C)].
Answer : 3/8.

P[A ∩ (B ∪ C)] = P[A] · P[(B ∪ C)] [due to independence]

=
1

2
·
[
P[A] + P[B]− P[(B ∩ C)

]
[Inclusion-Exclusion principle]

=
1

2
·
[
P[A] + P[B]− P[B] · P[C]

]
[due to independence]

=
1

2
·
[1
2
+

1

2
− 1

2
· 1
2

]
= 3/8.

2. Random variable X takes values in the set {−3,−2, 1, 2, 3} with PX [2] = PX [−2] and
PX [3] = PX [−3]. If E[X] = 1/4, then compute PX [1].
Answer : 1/4.

E(X) = −3 · PX [−3]− 2 · PX [−2] + PX [1] + 2 · PX [2] + 3 · PX [3]

= −3 · PX [3]− 2 · PX [2] + 2 · PX [2] + 3 · PX [3]︸ ︷︷ ︸
equals 0

+PX [1]

= PX [1].

It is given that E(X) = 1/4, hence PX [1] = 1/4.
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Question 03 [7 + 3 = 10 marks]

1. For a fixed n ∈ N, let X be a random variable such that Range(X) := {1, 2, 3, · · · , n}
and PX is the Uniform probability distribution. Show that

∑n
i=1 PX [X ≥ i] = n+1

2
.

Since probability distributes over disjoint events, we begin as follows:

n∑
i=1

PX [X ≥ i] = PX [X ≥ 1] + PX [X ≥ 2] + · · ·+ PX [X ≥ n]

=
( n∑

i=1

PX [i]
)
+
( n∑

i=2

PX [i]
)
+ · · ·+

( n∑
i=n

PX [i]
)

= 1 · PX [1] + 2 · PX [2] + · · ·+ n · PX [n]

= 1 ·
( 1
n

)
+ 2 ·

( 1
n

)
+ · · ·+ n ·

( 1
n

)
[∵ PX ∼ U ]

=
1

n
· n(n+ 1)

2

=
n+ 1

2
.

2. Consider P : Ω → [0, 1] to be a probability distribution on a non-empty sample
space Ω. If A,B,C ⊆ Ω be events such that A ∩ C̄ = B ∩ C̄, then show that
|P(A)− P(B)| ≤ P(C).
Note that, |P(A)− P(B)| ≤ P(C) ⇔ −P[C] ≤ P[A] − P[B] ≤ P[C]. Hence, consider
both of the following calculations.

A ∩ C̄ = B ∩ C̄
⇒P[A ∩ C̄] = P[B ∩ C̄]
⇒P[A]− P[A ∩ C] = P[B]− P[B ∩ C]
⇒P[A]− P[B] = P[A ∩ C]− P[B ∩ C]
⇒P[A]− P[B] ≤ P[A ∩ C]
⇒P[A]− P[B] ≤ P[A ∩ C] ≤ P[C]

A ∩ C̄ = B ∩ C̄
⇒P[A ∩ C̄] = P[B ∩ C̄]
⇒P[A]− P[A ∩ C] = P[B]− P[B ∩ C]
⇒P[A]− P[B] = P[A ∩ C]− P[B ∩ C]
⇒P[A]− P[B] ≥ −P[A ∩ C]
⇒P[A]− P[B] ≥ −P[A ∩ C] ≥ −P[C]

This completes the proof. qed.

Question 04 [15 marks]
An experiment Π has sample space Ω such that |Ω| = m, where m is a fixed natural number.
Let X and Y be random variables on Ω such that Range(X) := {1, 2, 3, · · · ,m} and
Range(Y ) :=

{
PX(1),PX(2),PX(3), · · · ,PX(m)

}
, where PX(i), ∀i = 1, 2, 3 · · · ,m are all

distinct. Show that the expected value, E(Y ) = 1/m when it is given that PY is the
Uniform probability distribution.
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Ω
{ω1, ω2, . . . , ωm}

[0, 1]

{1, 2, 3, . . . ,m}

[0, 1]

{PX(1),PX(2), . . . ,PX(m)}

[0, 1]

XY

P
PXPY ∼ U

The given scenario can be represented using the block diagram given above. Thus, we
consider the following:

E(Y ) =
m∑
i=1

Y (ωi) · PY [Y (ωi)] . . . [by definition]

=
m∑
i=1

Å
PX(i) ·

1

m

ã
. . . [PY ∼ U ]

=
1

m
·

(
m∑
i=1

PX(i)

)
︸ ︷︷ ︸

=1

. . . [PX is a prob. dist.]

=
1

m
.
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8.9 Quiz 05

Question 01 [6 marks]
Prove that if G is a graph with n vertices and n edges with no vertices of degree 0 or 1, then
the degree of every vertex is 2.

Proof. Let G be a graph with n vertices and n edges. By Euler’s Theorem we know,

n∑
i=1

deg(vi) = 2 · |E(G)| = 2n.

By assumption there are no vertices of degree 0 or 1, so δ(G) ≥ 2. Suppose for contradiction
that there is at least one vertex with degree more than 2. By Euler’s Theorem we have∑n

i=1 deg(vi) ≥ 2(n − 1) + 3 > 2n, a contradiction. Therefore we can conclude that the
degree of every vertex must be exactly 2.

Question 02 [3 + 3 = 6 marks]
Draw the following simple graphs, or give a formal explaination as to why they cannot exist.

2.1 A bipartite graph with 5 vertices and 7 edges.
Impossible.
The only way to partition 5 vertices would either be with partite sets of size 1 and 4,
or partite sets of size 2 and 3. K1,4 has 1 · 4 = 4 edges, while K2,3 has 2 · 3 = 6 edges.
Even a complete bipartite graph on 5 vertices can have more than 6 edges. So 7 edges
in this scenario is not possible.

2.2 A bipartite graph with 8 vertices and 10 edges.
There are several graphs with these properties, here is one.

Question 03 [6 marks]
Prove that if two graphs are isomorphic, they must contain the same number of triangles.
A triangle in a graph G is a 3-tuple of vertices (u, v, w) such that (u, v), (v, w), (u,w) are
edges in G.

Proof. We prove this using the definition of isomorphism; if two graphs G and H are isomor-
phic, there exists a bijection, f : V (G) → V (H), between them that maintains adjacencies.

Suppose that G has a triangle with vertices a, b, c. The mapping of these vertices to H
maintain that they are all pairwise adjacent, that is, f(a), f(b), f(c) forms a triangle in H.
Thus, each triangle in G corresponds to a triangle in H. Since an isomorphism is a bijection,
it has an inverse. If a triangle with vertices u, v, w exists in H, then f−1(u), f−1(v), f−1(w)
form a triangle in G. The arbitrary selection of vertices u, v, w completes the proof.
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Question 04 [6 marks]
Prove that in a graph G = (V, E) of order 9, if for every pair of distinct vertices u, v ∈ V
we have deg(v) + deg(u) ≥ 8 then G is connected.

Proof. Suppose that G is a disconnected graph of order 9 such that for every pair of distinct
vertices u, v, deg(u) + deg(v) ≥ 8. Since G is disconnected there must exist vertices, say
x, y, such that no x to y path exists in G. If no x to y path exists then certainly xy /∈ E(G)
and vertices x, y do not share neighbours. Let deg(x) = k for some k = 0, ..., 8. Since y
is not adjacent to x and they share no neighbours, deg(y) ≤ 8 − k − 1. Together we have
deg(x) + deg(y) ≥ k + 8− k − 1 = 7, a contradiction.

Therefore our assumption of G to be disconnected was false, hence G is connected.

Question 05 [6 marks]
Prove that if G is a bipartite graph with a Hamiltonian path, the orders of the partite sets
differ by at most one.

Proof. Let us assume that there exists a Hamiltonian path in a bipartite graph G, where
one partite set contains at least two vertices more than the other. Let us call the partite
sets A and B and assume without loss of generality that |A|+ 2 ≤ |B|.
Certainly if a Hamiltonian path existed it will begin in B and alternate between the two
partite sets. Once the path is of length 2|A| + 1 all vertices in A will be visited, while at
least one vertex in B will not be visited. This means it is not possible for a Hamiltonian
path to exist.

Question 06 [5 marks]
Consider a graph G formed by the addition of an edge to a tree T, while keeping G a simple
graph. Prove that G must have a cycle.

Proof. Let T be a tree, then T is connected with n − 1 edges. Consider adding an edge e
between vertices u, v in T, but by definition of a tree, there already existed a path between
u, v, before adding e. Clearly, e is not a part of this path. Thus, adding e we get a new path
between u, v, creating a cycle in resultant G.
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8.10 Quiz 06

Question 01 [4 + 4 + 4 = 12 marks]
Solve the following recurrence relations using characteristic equations only. Please write
your answers clearly.

1.1 hn = 3hn−1 − 4n for n ≥ 1, with h0 = 2.
The solution to the recurrence is hn = an + bn, i.e., generic + particular. The homo-
geneous equation is an = 3hn−1 whose characteristic equation is (x − 3) = 0. Hence,
an = c3n is a generic solution to the homogeneous equation. Suppose bn = rn+ s is a
particular solution, then

rn+ s = 3(r(n− 1) + s)− 4n = (3r − 4)n+ (3s− 3r).

Hence, we have the system of equations :

r = 3r − 4

s = 3s− 3r.

Solving, we get r = 2, s = 3 so that bn = 2n + 3. Hence, the general solution is
given by hn = c3n + 2n + 3. If n = 0, we get 2 = c + 3 so that c = −1. Therefore,
hn = −3n + 2n+ 3 is a solution.

1.2 hn = 2hn−1 + hn−2 − 2hn−3 for n ≥ 3, with h0 = 1, h1 = 2, h2 = 0.
The characteristic equation is x3 − 2x2 − x + 2 = 0. Factoring, we get x(x2 − 1) −
2(x2 − 1) = (x − 2)(x − 1)(x + 1). So the characteristic roots are 1,−1 and 2. The
solution to the LRR is given by hn = c1(1)

n + c2(−1)n + c3(2)
n.

The initial conditions give

c1 + c2 + c3 = 1

c1 − c2 + 2c3 = 2

c1 + c2 + 4c3 = 0

This yields c1 = 2, c2 = −2
3
, c3 = −1

3
. The final answer becomes hn = 2− 2

3
(−1)n− 1

3
2n.

1.3 hn = 2hn−1 + 3n for n ≥ 1, with h0 = 2.
The solution to the recurrence is hn = an + bn, i.e., generic + particular. The homo-
geneous equation is an = 2hn−1 whose general solution is an = c2n. For a particular
solution, we try bn = p3n. Then,

p3n = 2p3n−1 + 3n

⇒ 3p = 2p+ 3

⇒ p = 3.

Therefore, a general solution is given by hn = c2n+3n+1. At n = 0, h0 = 2, so c = −1.
Therefore, hn = −2n + 3n+1 is a solution.

OR
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Question 02 [6 + 6 = 12 marks]
Answer each of the following sub-questions.

2.1 Let m,n ∈ N. Show that the number of functions from the domain {1, 2, . . . ,m} →
{1, 2, . . . , n} is equal to the total number of r-permutations of a multiset S. Determine
r, determine S and then compute the total number of functions.
Consider the multiset S = {m · 1,m · 2, . . . ,m · n}. Then, any m permutation gives a
unique function f : {1, 2, . . . ,m} → {1, 2, . . . , n} - the first member of the permutation
defines f(1), second member defines f(2), and so on with the mth member defining
f(m).

Conversely, any function f : {1, 2, . . . ,m} → {1, 2, . . . , n} gives an m-permutation of
S - which is, (f(1), f(2), . . . , f(m)).

Therefore, the total number of function is equal to the total number ofm permutations
on the set S. Therefore r = m. Finally, the total number of m permutations on the
set S is nm.

2.2 Determine the sequence of numbers h0, h1, h2, . . . , hn whose generating function is
given by (1 + x+ x2 + x3 + · · · )(1− x+ x2 − x3 + · · · ).
We have, (1 + x+ x2 + x3 + · · · )(1− x+ x2 − x3 + · · · ) = 1

1−x
· 1
1+x

= 1
1−x2 . However,

1

1− x2
= 1 + x2 + (x2)2 + (x2)3 + · · · = 1 + x2 + x4 + x6 + · · ·

Therefore, h0, h1, h2, hn, . . . = 1, 0, 1, 0, 1, 0, . . . , and in compact notation we have,

hn =

®
1, if n is even

0, if n is odd.

Question 03 [6 marks]
How many 7-digit numbers are there such that the digits are distinct integers taken from
{1, 2, · · · , 9} and such that the digits 5 and 6 do not appear consecutively in either order?
▶ Trivia : 7! = 5040.
Answer : 151,200.
Method I : Consider the following cases.

a If the number has neither 5 nor 6: We can count the number of 7 permutations of the
set {1, 2, 3, 4, 7, 8, 9}. There are P (7, 7) = 7! such numbers.

b If only the number 5 occurs, but 6 does not occur: The six remaining digits (other
than 5) can be obtained as a 6-permutation of the set {1, 2, 3, 4, 7, 8, 9}. There are
P (7, 6) ways of doing this. Then, there are 7 places where the 5 can go, so there are
7× P (7, 6) = 7× 7! such numbers. If only 6 occurs and 5 does not: Again, there are
7× 7! such numbers.

c If both 5 and 6 occur: The 5 remaining digits can be obtained as a 5-permutation
of the set {1, 2, 3, 4, 7, 8, 9}. There are P (7, 5) ways of doing this. Then, there are 6
places for the 5, and 5 places for the 6, so there are 6 × 5 × P (7, 5) = 30 × 7!

2!
such

numbers.

So the total number of such numbers is

7! + 2× 7× 7! + (30× 7!

2!
) = 30× 7! = 151, 200.
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Method II : To begin with, there are 9P 7 seven-digit numbers without the constraint of
5 − 6 appearing together. Now we find the number of 7-digit numbers where 5 and 6 are
consecutive.

a Block “56” appears together : We treat the sequence ”56” as a single unit or block.
Now we need to form an arrangement of length 6 (since ”56” takes two original po-
sitions but acts as one unit). We must choose 7 − 2 = 5 additional digits from the
remaining 9 − 2 = 7 digits available in {1, 2, · · · , 9} \ {5, 6}. The number of ways to
choose these 5 digits is 7C5. Once we have the block ”56” and the 5 chosen digits, we
have a total of 1 + 5 = 6 items to arrange. The number of ways to arrange these 6
items is 6!. Thus, the number of arrangements containing the block ”56” is:

7C5 × 6! =
7!

5!2!
× 6! =

7× 6

2
× 720 = 21× 720 = 15, 120.

b Block “65” appears together : WLOG, the count is exactly same as the previous case.
It is 15, 120.

Since the digits must be distinct, an arrangement cannot contain both ”56” and ”65”.
Therefore, the total number of arrangements where 5 and 6 are consecutive is the sum
of the numbers from the above cases (using sum rule). Total forbidden arrangements =
30, 240. Using the principle of Inclusion-Exclusion we get Allowed arrangements =
Total permutations - Total forbidden arrangements. Thus the required count is

181, 440− 30, 240 = 151, 200.

OR

Question 04 [6 marks]
Consider the multiset S = {10 · a1, a2, a3, . . . , a11}. Determine number of 10-combinations
of S.
Answer : 1024.
We count the number of 10-combinations by considering how many times the element a1
appears in each combination.

- The number of 10-combinations with no a1 included is 1. The combination is given
by {a2, . . . , a11}.

- If a 10-combination includes a1 exactly once, then the remaining 9 elements must be
chosen from a2, . . . , a11, which is 10C9.

- If a 10-combination includes a1 exactly twice, then the remaining 8 elements must be
chosen from a2, . . . , a11, which is 10C8.

· · · and so on · · ·

- The number of 10-combinations with all members equal to a1 is 1.

Thus, using the Binomial Theorem we get the total number of required 10-combinations to
be

1 + 10C9 +
10C8 + . . .+ 10C1 + 1 = 10C10 +

10C9 +
10C8 + . . .+ 10C1 +

10C0 = 210 = 1024.
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Question 05 [4 marks]
Prove using PHP, that if more than 1001 integers are selected from {1, ..., 2000} then there
are at least two integers that are relatively prime, i.e., there exist two integers, say m and
n, such that gcd(m,n) = 1. Clearly mention what are the pigeons and which are the
pigeonholes in your setup.
We can partition the numbers into sets of size two, where the second digit is one less than
the first: {1, 2}, {3, 4}, . . . , {1997, 1998}, {1999, 2000}. Then, there are exactly 1000 of these
disjoint subsets, which represent our ‘pigeonholes’. Choose any 1001 integers and let them
represent our ‘pigeons’. Then by PHP, we will have two integers from the same disjoint
subset. Hence, two integers are relatively prime.

OR

Question 06 [4 marks]
Let 1, 1, 5, 17, h4, h5, . . . be a sequence of numbers satisfying a homogeneous linear recurrence
with constant coefficients such that the recurrence is of order 2. Determine h4 and h5.
Answer : h4 = 61; h5 = 217.
Let hn = ahn−1+bhn−2 (n ≥ 2). Then 5 = h2 = ah1+bh0 = a+b and 17 = ah2+bh1 = 5a+b.
Thus, we have two linear equations:

a+ b = 5

5a+ b = 17.

On solving, we get a = 3, b = 2. Thus h4 = 3h3 + 2h2 = 3× 17 + 2× 5 = 61, and on same
tracks h5 = 3h4 + 2h3 = 3× 61 + 2× 17 = 217.

Question 07 [4 marks]
A combinatorial proof is an arbitrary scenario where the same thing can be counted in two
different ways. Give a combinatorial proof of the following : m · nCm = n · n−1Cm−1.
Consider a group of n people who all apply to be on a committee of m people that requires a
leader. There are two possible ways we can form the committee. We can either first choose
from the larger group of n people our committee of m individuals, and then within that
committee chose a leader, m possibilities. This is m · nCm.

Alternatively, we can pick from the leader from the larger group of n people first, and then
from the remaining n− 1 select the remaining m− 1 non-leader committee members. This
is n · n−1Cm−1. Since we counted the same scenario in two different ways, these expressions
are equivalent.

Question 08 [4 + 5 = 9 marks]
Rooks on a chessboard can only attack another piece if they travel in the same row or in
the same column. So a set of rooks are said to be non-attacking if no two rooks share the
same row or the same column. A typical example is shown in the figure, where Φ represents
a Rook.

Φ
Φ

Φ
Φ

Φ
Φ

Φ
Φ
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8.1 How many possible arrangements are there for eight non-attacking rooks on an 8× 8
board?
Answer : 8!
Each square is labelled (i, j) as usual. There are eight rooks, so they must occupy
positions of the form (1, j1), (2, j2), . . . (8, j8). Now the set {j1, j2, . . . , j8} is a permu-
tation of {1, 2, . . . , 8} since no two ji’s can be equal. Therefore, there are precisely 8!
ways of arranging the rooks.

8.2 Now suppose each rook is coloured by a different colour. How many such arrangements
are there?
Answer : (8!)2

In the previous sub-question, we have chosen the positions for eight unlabelled rooks.
When we label them, then there are a further 8! ways of permuting the colours, so we
get (8!)2 such arrangements.

8.3 Practice Question. What if there are four yellow, three blue and one red rook. How
many arrangements are there now?

Answer : (8!)2

1!3!4!

This is now a multiset {1 ·R, 3 ·B, 4 ·Y }. The number of permutations of the multiset

is 8!
1!3!4!

. So the number of ways to arrange the rooks is (8!)2

1!3!4!
.

Question 09 [6 + 3 = 9 marks]
Answer the following sub-questions. Please be clear while writing your answers.

9.1 Determine the number of integral solutions of the equation

x1 + x2 + x3 + x4 = 20,

where x1 ≥ 5, x2 ≥ −2, x3 ≥ 0 and x4 ≥ 5.
Answer : 455.
Note the given equation can be realised as:

(x1 − 5) + (x2 + 2) + x3 + (x4 − 5) = 12.

Respecting the constraints given on the variables x1, x2, x3 and x4 we can perform the
following variable substituions in the given equation.

(x1 − 5) ↔ y1

(x2 + 2) ↔ y2

x3 ↔ y3

(x4 − 5) ↔ y4

Thus we are left with the equation

y1 + y2 + y3 + y4 = 12,

where all variable y′is are non-negative. Thus count of all non-negative integer equation
of this new equation solves the problem. Following the theory of combinations with
repetitions we get this count to be 15C3 =

15C12 = 455.
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9.2 Determine the value of
∑10

k=0(−1)k
(
10
k

)
310. Please do not do a brute-force calculation

by computing each term of the summation.
Answer : 0.
Calculation I : Using the Binomial expantion appropriately we get,

0 = (3 + (−3))10 =
10∑
k=0

10Ck · 310−k(−3)k =
10∑
k=0

10Ck · 310−k(−1)k3k

=
10∑
k=0

10Ck · 310(−1)k.

Calculation II : In an alternative perspective, we have

10∑
k=0

(−1)k 10Ck = 310
10∑
k=0

(−1)k · 10Ck

= 310
10∑
k=0

(−1)k 10Ck · (1)10−k

= 310(1 + (−1))10

= 0.
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8.11 End-Term Assessment

Scheduled for 08 May, 2025 from 1430 to 1530.
Appropriate contents shall be made available then!
Note that it is a 3 hrs examination and shall be worth of 70 total marks.
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PROGRAMING PROBLEM SETS

9.1 Problem Set 01 - Intro to loops & conditional statements

1. Print the factors of a positive integer given as input.

2. Print the sum of digits in an input positive integer.

3. Count the number of digits in an integer given as input.

4. Check if a input number is a Perfect Number.

5. Check if an input positive integer is an Armstrong Number.

6. Reverse the digits of a positive integer given as input.

9.2 Problem Set 02 - Nested loops-I

1. Write a program in C programming language to evaluate the logical expression

(A ∧B) ∨ ¬C

for given boolean values of A, B and C as inputs. Your code must take three integers
(either 0 or 1) as inputs from the user and shall return the truth value of the given
logical expression as result.

2. Write a program in C programming language to check whether a given number is
divisible by 5, 13, both or neither. Your code must take an integers as input from the
user and shall return the status of divisibility mentioned as result.

3. Write a program in C programming language which prints the complete truth table of
the following logical expressions:

(a) (A ∨B) ∧ ¬C
(b) (A ∧ ¬B) → (B ∨ ¬(A ∧B))
(c) (A ∧B) ∨ ¬C

4. By now each one of you must be familiar about semantic entailment and how it can
be used to prove any particular logical argument to be invalid. Write a program in
C programming language, which uses semantic entailment to prove invalidity of the
following logical arguments.

(a) (r → (¬p ∨ q)), (p ∧ ¬r) |= ¬(¬r ∨ q)
(b) (p ∨ (q ∧ ¬r)), (r → (¬q ∨ p)) |= (q ∧ ¬p)
(c) (¬p ∨ q), (¬r ∨ ¬q), (¬r ∨ p) |= ¬r

▶ 0 is the boolean value for False in C.

Logical Operators Symbol in theory Symbol in C syntax

neg ¬ !

conjunction ∧ &&

disjunction ∨ ||
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9.3 Problem Set 03 - Nested loops-II

1. Write a program in C programming language to check if a positive integer given as
input is a Palindrome or not. Your code must take a positive integer as input from
the user and shall print as output if it is a palindrome number or not.

2. Write a program in C programming language to check if a positive integer given as in-
put is a Prime or not. Your code must take a positive integer as input from the user and
shall print as output if it is a prime number or not. 1 is not a prime, by definition.

3. Write a program in C programming langauge to print the Fibonacci Series up to N
Terms. Your code must take a positive integer as input from the user - N and shall
print as output the Fibonacci Series as per the mentioned requirement.

(a) Try to code the above without using arrays.

(b) Try to code the above using 1-Dimensional arrays.

4. Write a program in C programming language to print all possible 4-bit binary strings,
that is, binary strings of length 4. Hint: at best it only requires nested for loops.

9.4 Problem Set 04 - Intro to 1D arrays & more on nested loops

1. Write a program in C programming language which takes two binary strings as inputs
from the user and performs the following bitwise binary operations and gives the result
as output. The concept of loops, nested loops and 1D arrays shall suffice.

(a) Bitwise AND

(b) Bitwise OR

(c) Bitwise XOR

(d) Bitwise NAND

(e) Bitwise NOR

(f) Bitwise XNOR

2. Write a program in C, which approximates the value of sin(π/2) using the following
Taylor Series for sine function. Do the approximation with a 0.01% precision involving
the least number of Taylor series terms and print the approximated value, the actual
value and the error in approximation. Do not create any implicit custom functions in
your code. ⋆

sinx =
∞∑
n=0

(−1)n

(2n+ 1)!
· x2n+1 = x− x3

3!
+
x5

5!
− x7

7!
· · ·

• Use the header file math.h, which has in-built function sin() to get the actual
value of sin(π/2).

• The function fabs() from math.h is used for modulus or the absolute value of
its argument.

• The constant π is stored as M PI in math.h.

• error in approximation = |approximated value - actual value| .
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3. Write a program in C, which approximates the value of cos(π/2) using the follow-
ing Taylor Series for cosine function. Do the approximation with a 0.01% precision
involving the least number of Taylor series terms and print the approximated value,
the actual value and the error in approximation. Do not create any implicit custom
functions in your code. ⋆

cosx =
∞∑
n=0

(−1)n

(2n)!
· x2n = 1− x2

2!
+
x4

4!
− x6

6!
· · ·

• Use the header file math.h, which has in-built function cos() to get the actual
value of cos(π/2).

• The function fabs() from math.h is used for modulus or the absolute value of
its argument.

• The constant π is stored as M PI in math.h.

• error in approximation = |approximated value - actual value| .

4. Write a program in C, which takes members of two sets as inputs and stores them in
two 1D-arrays, and gives all the members of their cross-product as output. Cardinality
of each input set is 4.

5. Write a program in C, which takes members of a set as inputs and stores them in a
1D-array, and gives all the members of its power set as output. Cardinality of the
input set is 3. ⋆⋆

Logical Operators Symbol in theory Symbol in C syntax

Bitwise NOT ¬ ∼
Bitwise AND ∧ &

Bitwise OR ∨ |

Bitwise XOR ⊕ ^

9.5 Problem Set 05 - Nested loops and theory related computa-
tion problems

1. For positive real numbers a and r (where 0 < r < 1), the sum of the infinite geometric
series is given by:

a+ ar + ar2 + · · · = a

1− r
.

Write a program in C that takes three real numbers a, r, c as inputs, where a > 0,
0 < r < 1, and 0 < c < 1. The program should output the smallest integer k such
that ( a

1− r

)
− (a+ ar + ar2 + · · ·+ ark) < c.

Additionally, the program must print the values of ( a
1−r

) and the partial sum (a+ar+

ar2 + · · ·+ ark). ⋆

2. Write a program in C programming language which takes two positive integers k and n
as inputs from the user, and outputs the equivalence class of Zn in which k belongs. For
example, for n = 7, Z7 = {0̂, 1̂, 2̂, 3̂, 4̂, 5̂, 6̂} has 7 equivalence classes and k = 25 ∈ 4̂.
Do not use the in-built ‘%’ operator, even once in the entire program.
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3. For x ∈ R, the Taylor Series for exponential function is given by:

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ · · ·

Write a program in C that takes c (0 < c < 1) and x ∈ R+ as inputs and computes
the above series for until the following happens for the smallest possible integer k:∣∣∣ (ex)︸︷︷︸

actual

− (1 + x+
x2

2!
+
x3

3!
+ · · ·+ xk

k!
)︸ ︷︷ ︸

approx.

∣∣∣ < c.

As output, print the actual and the approximated value for ex. Use the header file
math.h, which has in-built function exp() to get the actual value of ex and the function
fabs() for the absolute value of its argument. Both needs argument of double data
type.

4. Write a program in C programming language which takes a binary string of length 5
as input, stores it in a 1D array and checks whether it is palindrome or not. Can this
be extended such that the program takes a positive integer as input, and checks if it is
a palindrome or not? ⋆

9.6 Problem Set 06 - Introduction to functions in C

Definition 9.6.1. (O − notation) For functions f : N → R and g : N → R we say that

f(x) = O
(
g(x)

)
,

if there exists a constant C ∈ R+ and n0 ∈ N such that we have |f(n)| ≤ C · |g(n)|, ∀n ≥ n0.

Lemma 9.6.2. All polynomials are O of their term with the highest power. Let f : N → R
be a polynomial of degree k, i.e, f(x) = a0 + a1x + a2x

2 + · · · + akx
k, where a′is are real

numbers, and g : N → R be the k−degree monomial, i.e, g(x) = xk, then ∀k ∈ N we have

f(x) = O
(
g(x)

)
.

Proof. left as homework.

1. Write a program in C programming language which:

step i. takes positive integer k as input,
step ii. takes the real constants a0, a1, · · · , ak as inputs and stores them in an 1D array,
step iii. takes a real number r > |ak|+ k as input and then finally

gives the smallest natural number n0 as output for which a0 + a1x+ a2x
2 + · · ·+ akx

k

is O(xk).

2. The following given are the recursive and the closed forms of some functions from N to
N. Write programs in C programming language for each of them which takes a positive
integer k as input and computes the image of the function using their recursive forms
and closed forms. Define and use custom made implicit functions in your program
appropriately.
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. Function Recursive Form Closed Form Comment

1. S(n) S(n− 1) + n n(n+1)
2

sum of first n natural no.s
2. S0(n) S0(n− 1) + (2n− 1) n2 sum of first n odd natural no.s

3. Ss(n) Ss(n− 1) + n2 n(n+1)(2n+1)
6

sum of squares of first n natural no.s

3. Write a program in C programming language which takes a positive integer n as input
and gives as output the nth term of the Fibonacci sequence, computed both recusively
and iteratively. Define and use custom made implicit functions in your program for
each of the two ways of computation. Note: for Fibonacci sequence F1 = F2 = 1.

4. Write a program in C programming language which takes a positive integer n as
input and gives as output the n!, computed both recusively and iteratively. Define
and use custom made implicit functions in your program for each of the two ways of
computation. Note: for factorials, 0! = 1.

9.7 Problem Set 07 - Recursive functions in C-I

1. Comparisons in Binary Search
Let B(n) denote the number of comparisons needed to search an element in a sorted
array of size n. The recurence relation ∀n ∈ N of this function is:

B(n) =

®
1 n = 1,

B(n/2) + 1 otherwise.

Also, the closed form for the same function is:

B(n) = log2 n+ 1, ∀n ∈ N.

Write a program in C programming language which takes a positive integer k as input
from the user and computes B(k) both using the recursive relation and the closed form
and prints them as output.
▶ specifications & notes :

1. Define two custom functions, one each for the recurence computation
and closed form evaluation.

2. Use log2( double ) from math.h for calculating log2 n().

2. Babylonian Method ⋆
A square root approximation for any positive rational number r has the following
recurence relation:

ai =

®
r/2 i = 0,
1
2

(
ai−1 +

r
ai−1

)
otherwise.

Write a program in C programming language which takes a positive reals r and c (0 <
c < 1) as inputs from the user and recursively approximates

√
r untill we have∣∣√r − ak

∣∣ ≤ c.
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As output we need the approximated square root and the smallest integer k for which
the above happens.
▶ specifications & notes :

1. Define custom function for recursive computation.
2. Use fabs( double ) from math.h for absolute value.
3. Use sqrt( double ) from math.h for square root.

3. Moves in Tower of Hanoi
Let H(n) denote the number of moves needed to solve the Tower of Hanoi problem
with n disks. The recurence relation ∀n ∈ N of this function is:

H(n) =

®
1 n = 1,

2H(n− 1) + 1 otherwise.

Also, the closed form for the same function is:

B(n) = 2n − 1, ∀n ∈ N.

Write a program in C programming language which takes a positive integer k as input
from the user and computes H(k) both using the recursive relation and the closed
form and prints them as output.
▶ specifications & notes :

1. Define two custom functions, one each for the recurence computation
and closed form evaluation.

4. Newton-Raphson Method ⋆
A cube root approximation for any positive rational number r has the following re-
curence relation:

ai =

®
r/2 i = 0,
1
3

(
2ai−1 +

r
(ai−1)2

)
otherwise.

Write a program in C programming language which takes a positive reals r and c (0 <
c < 1) as inputs from the user and recursively approximates 3

√
r untill we have∣∣ 3

√
r − ak

∣∣ ≤ c.

As output we need the approximated cube root and the smallest integer k for which
the above happens.
▶ specifications & notes :

1. Define custom function for recursive computation.
2. Use fabs( double ) from math.h for absolute value.
3. Use cbrt( double ) from math.h for cube root.
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9.8 Problem Set 08 - Recursive functions in C-II

1. Sum of Digits
By now, you are well aware about the problem of computing the sum of digits of a
positive integer. Write a program in C, which takes a positive integer as an input and
computes the sum of its digits both recursively & iteratively.
▶ specifications & notes :

1. Define two custom functions, one each for the recurence computation
and closed form evaluation.

2. Viete Method ⋆
In 1593, François Viète published a way to express the reciprocal of π as the following
infinite product of nested radicals:

1

π
=

1

2
·
√
2

2
·
√
2 +

√
2

2
·

»
2 +

√
2 +

√
2

2
· · · = 1

2

∞∏
n=0

ai
2
,

ai =

®√
2 i = 0,

√
2 + ai−1 otherwise.

Write a program in C programming language which takes a positive real c (0 < c < 1)
as input from the user and recursively approximates 1

π
(which will give πapprox) untill

we have ∣∣∣πactual − πapprox

∣∣∣ ≤ c.

As output we need the approximated π and the smallest last index i for which the
above happens.
▶ specifications & notes :

1. Define custom function for recursive computation.
2. Use fabs( double ) from math.h for absolute value.
3. Use sqrt( double ) from math.h for square root.
4. Use M PI from math.h for actual π.
5. Since the recursion formula is being used for each i = 0, 1, 2 . . . k, is there

a way to use the value from the pervious step in the current step?

3. Reverse an array
By now, you are well aware about the problem of reversing an integer. Write a program
in C, which takes a positive integer as an input and computes its reverse recursively
only.
▶ specifications & notes :

1. Define a custom function, for the recurence computation.
2. Do not use pow( double , double ) from math.h .
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9.9 Problem Set 09 - Simulating probability distributions in C
using rand( )

1. Write a program in C programming language to simulate the ‘single-coin tossing
experiment’ for an unbiased coin. Clearly, the sample space is Ω = {H,T} and if
this experiment realises the probability distribution P : Ω → [0, 1] then your code must
statistically verify that P is the uniform probability distribution.

2. Write a program in C programming language to simulate the ‘single-coin tossing
experiment’ for a biased coin. The bias is such that, H appears twice the number
of times T appears. Clearly, the sample space is Ω = {H,T} and if this experiment
realises the probability distribution P : Ω → [0, 1] then your code must statistically
verify that P is not the uniform probability distribution.

3. Write a program in C programming language to simulate the ‘single-dice throwing
experiment’ for an unbiased dice. Clearly, the sample space is Ω = {1, 2, 3, 4, 5, 6}.

(a) If this experiment realises the probability distribution P : Ω → [0, 1] then your
code must statistically verify that P is the uniform probability distribution.

(b) If A ⊆ Ω is the event defined as A := {ω ∈ Ω | ω = 0 mod 2}, then compute
P(A) using your code.

(c) If B ⊆ Ω is the event defined as B := {ω ∈ Ω | ω ≤ 4}, then compute PA(B) and
PB(A).

(d) If C ⊆ Ω is the event defined as C := {ω ∈ Ω | ω = 1 mod 2}, then compute
P(A ∩ C) using your code and thus verify that events A and C are mutually
disjoint events.

4. Consider the ‘double-die throwing experiment’ for two unbiased die, i.e., two
unbiased die are thrown simultaneously. If Ω = {1, 2, 3, 4, 5, 6}, then the sample space
is Ω × Ω. Write a program in C programming language to simulate this experiment
and then use your code to compute the following, when this experiment realises the
probability distribution P : Ω× Ω → [0, 1]. ⋆

(a) If A ⊆ Ω×Ω is an event such that A := {(s, t) ∈ Ω×Ω | s+ t = 0 mod 2}, then
compute P(A).

(b) If B ⊆ Ω×Ω is an event such that B := {(s, t) ∈ Ω×Ω | s+ t = 0 mod 4}, then
compute P(B) and numerically verify that P(B) ≤ P(A). Any theory explaining
as why this is happening?

5. Consider experiment Π named ‘Chausar’, where two 4-sided die are thrown simulta-
neously. Die-01 has marked 1, 2, 3, 4 whereas die-02 has faces marked 5, 6, 7, 8. The
sample space is Ω1×Ω2 where Ω1 = {1, 2, 3, 4} and Ω2 = {5, 6, 7, 8}. Write a program
in C programming language to simulate Π and then use your code to compute the
following, when Π realises the probability distribution P : Ω1 × Ω2 → [0, 1]. In Π, we
play Chausar using two unbiased die. ⋆⋆

(a) If A ⊆ Ω1 × Ω2 is an event such that
A := {(s, t) ∈ Ω1 × Ω2 | s and t differs at most by 3}, then compute P(A).

(b) If B ⊆ Ω × Ω is an event such that B := {(s, t) ∈ Ω1 × Ω2 | s + t = 1 mod 2},
then compute P(B).
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6. Consider Π1, a ‘random walk’ experiment, where a walk is performed along the
X-axis, starting from 0. At each step:

- the walker can either move forward by a unit distance with probability 3/4, or
- the walker can move backward by a unit distance with probability 1/4.

Write a program in C programming language which simulates this random walk Π1,
such that it takes a positive integer n as input and determines as on to which direction
the walker ends after this random walk? What is the distance traversed? ⋆

7. Consider Π2, a ‘random walk’ experiment, where a walk is performed in the 1st

quadrant of the XY-plane, starting from 0. At each step:

- the walker can either move along the Y-axis by a unit distance with probability
1/2, or

- the walker can move along the X-axis by a unit distance with probability 1/2.

Write a program in C programming language which simulates this random walk Π2,
such that it takes a positive integer n as input and determines on which point in the
XY-plane the walker ends after this random walk? The output must be coordinates
of a point in the XY-plane. Is it counter-intuitive that the x and y coordinate of the
final point is always the same? ⋆

9.10 Problem Set 10 - Matrices & Graphs in C

Problems based on graph categorisation

1. Write a program in C programming language which takes the adjacency matrix of a
general undirected graph G as input (element-wise). The program should detect the
presence of any loops in G, and if any it must count the number of loops.

2. Write a program in C programming language which takes the adjacency matrix of
a simple undirected graph G as input (element-wise). The program must count the
total number of edges and the sum of the degrees of all the vertices in G. Incorporate
relevant results you have seen in the Theory of Graphs.

3. Write a program in C programming language which takes the adjacency matrix of an
undirected multigraph G as input (element-wise). The product must return the count
of the total number of multi-edges present in G.

4. Write a program in C programming language which takes the adjacency matrix of
a general graph G as input (element-wise). The program must detect whether the
corresponding graph G is a directed graph or an undirected graph. ⋆

Problems based on DFS

1. Write a program in C programming language which takes the number vertices, the
number of edges and the edges (vertex pairs) of a tree as inputs. For a given starting
vertex, the program must perform a DFS to find the last vertex of the tree. The
output must be the path traversed during the search. ⋆

82



2. Write a program in C which counts the number of connected components for a given
graph, using a DFS. ⋆

3. Write a program in C which detects cycles in a given undirected graph, using a DFS
approach. ⋆⋆

Ideas

Now that you have seen how to generate pseudo-random integers in C using the rand()

function, consider the following program (9.10) which generates a random integer matrix,
equivalent to a typical adjacency matrix for an undirected graph G, which does not have
multi-edges. Can this concept be implemented in the above listed programs?

1

2 #include <stdio.h>

3 #include <time.h>

4 #include <stdlib.h>

5

6 int main()

7 {

8 srand(time(NULL ));

9

10 int n;

11 printf("Enter␣the␣order␣of␣the␣graph:␣");

12 scanf("%d", &n);

13

14 int G[n][n];

15

16 for(int i=0; i < n; i++)

17 {

18 for(int j=0; j < n; j++)

19 {

20 //... scope for meaningful experimentations

21 G[i][j] = rand() % 2;

22

23 }

24 }

25

26 printf("\n");

27 printf("The␣generated␣random␣matrix␣is␣:\n");

28

29 for(int i=0; i < n; i++)

30 {

31 for(int j=0; j < n; j++)

32 {

33 printf("%d␣", G[i][j]);

34 }

35 printf("\n");

36 }

37

38 return 0;

39 }
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EXTRAS

10.1 Problem Set 08 - Asymptotics-I (solutions)

1. Find the Θ−bounds for the following recurrences.

(a) T (n) = 4T (n/2) + c where T (1) = c0

T (n) = 4T (n/2) + c

4T (n/2) = 16T (n/4) + 4c

16T (n/4) = 64T (n/8) + 16c

64T (n/8) = 256T (n/16) + 64c

...

4k−2T (n/2k−2) = 4k−1T (n/2k−1) + 4k−2c

4k−1T (n/2k−1) = 4kT (n/2k) + 4k−1c

Let n such that, n/2k = 1. Then n = 2k and,

→ log2 n = k × log2 2 = k

→ 4k−1T (n/2k−1) = 4kc0 + 4k−1c

Now, add all the recurrences, and cancel out all terms except T(n), 4kc0 and the
terms accounting for the constant cost c for each branching of the recurrence tree.
T (n) = 4log2 nc0 + c(4 + 16 + 64 + · · ·+ 4log2 −1)

⇒ T (n) = nlog2 4c0 + c(4(4
log2 n−1−1)

4−1
)

⇒ T (n) = n2c0 + c(n
log2 4−4

3
)

⇒ T (n) = n2c0 +
c(n2)
3

− 4c
3

⇒ T (n) = n2(3c0+c
3

)− 4c
3

⇒ T (n) ∈ Θ(n2)

(b) T (n) = T (n/4) + T (n/2) + n · c where T (1) = c0

c · n

c · n/4

c · n/16

c · n/64

· · ·

c0 c0

c · n/32

· · ·

c0 c0

c · n/8

c · n/32

· · ·

c0 c0

c · n/16

· · ·

c0 c0

c · n/2

c · n/8

c · n/32

· · ·

c0 c0

c · n/16

· · ·

c0 c0

c · n/4

c · n/16

· · ·

c0 c0

c · n/8

· · ·

c0 c0

The cost of each level in the recursion tree is as follows:

1. c · n
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2. c · n
4
+ c · n

2
= 3cn

4

3. c · n
16

+ c · n
8
+ c · n

8
+ c · n

4
= 9cn

16

4. c · n
16

+ c · n
32

+ c · n
32

+ c · n
16

+ c · n
32

+ c · n
16

+ c · n
16

+ c · n
8
= 27cn

64

We see that at each level the work is being multiplied by 3
4
.

(Exercise : Prove this with Induction).
Thus, the total work done is,

∞∑
i=0

Å
3

4

ãi
c · n = cn+

3cn

4
+

9cn

16
+ . . .

=
cn

1− 3
4

(GP Sum)

= 4cn

∈ Θ(n) (c0 =
1

4(c+1)
, c1 = 5(c+ 1))

(c) T (n) = T (n− 2) + T (n− 4), where T (0) = T (1) = T (2) = T (3) = c0.

T (n)

T (n− 2)

T (n− 4)

· · · · · ·

T (n− 6)

· · · · · ·

T (n− 4)

T (n− 6)

· · · · · ·

T (n− 8)

· · · · · ·

We have : T (n) = T (n− 2) + T (n− 4).
n = 2k ⇒ T (2k) = T (2(k − 1)) + T (2(k − 2))
Let ak = T (2k)
The resulting recurrence is: ak = ak−1 + ak−2

Using the fibonacci recurrence : ⇒ ak ∈ Θ(φn)
Now, T (0) = T (1) = T (2) = T (3) = c0
⇒ φn

1+c0
≤ T (n) ≤ (1 + c0)φ

n

⇒ T (n) ∈ Θ(φn)

(d) T (n) = T (n− 1) + T (n− 2) + k, where T (0) = 0 and T (1) = 1.

2. Solve the following linear-homogeneous recurrences and comment on their O−bounds.

(a) F (n) = 7F (n− 1)− 12F (n− 2), n ≥ 2 and F (0) = 5, F (1) = −5.
F (n) = 25.3n − 20.4n

(b) F (n) = F (n− 1) + 2F (n− 2), n ≥ 3 and F (1) = 0, F (2) = 6.
F (n) = 2.(−1)n + 2n

(c) F (n) = −F (n−1)+4F (n−2)+4F (n−3), n ≥ 3 and F (0) = 8, F (1) = 6, F (2) =
26.
F (n) = 2.(−1)n + (−2)n + 5.2n

(d) F (n) = 4F (n− 1)− 4F (n− 2), n ≥ 3 and F (1) = 1, F (2) = 3.
F (n) = (1 + n).2n−2
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(e) F (n) = 8F (n−1)−16F (n−4), n ≥ 4 and F (0) = 1, F (1) = 4, F (2) = 28, F (3) =
32.
F (n) = (1 + 2n).2n + n.(−2)n

(f) F (n) = −3F (n − 1) − 3F (n − 2) − F (n − 3), n ≥ 3 and F (0) = 1, F (1) =
−2, F (2) = −1.
F (n) = (1 + 3n− 2n2).(−1)n

3. For function f, g and h mapping from N to R+, prove the following:

(a) If f = O(h) and g = O(h), then f + g = O(h), where f + g : N → R+ defined as(
f + g

)
(x) = f(x) + g(x).

(b) If f = O(h) and g = O(h), then f · g = O(h), where f · g : N → R+ defined as(
f · g

)
(x) = f(x)g(x).

4. For p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, show that p(x) = O(xn).

5. Prove the following asymptotic identities for n ∈ N:

(a) n! = O(nn).
1 ≤ n; 2 ≤ n; 3 ≤ n; 4 ≤ n; · · · ; n ≤ n. Thus we get :
1 · 2 · 3 · · · · n ≤ n · n · n · · · · n︸ ︷︷ ︸

n times

⇒ n! ≤ nn.
Thus for c = 1 and n0 = 1 we have n! = O(nn).

(b) log n! = O(n log n).
From part(a) we borrow n! ≤ nn

⇒ log n! ≤ n log n.
Thus for c = 1 and n0 = 1 we have log n! = O(n log n).

(c) lnn = O(n).

6. Prove that for some k ∈ N,
∑k

i=1 i
8 = O(k9). ⋆

18 ≤ k; 28 ≤ k; 38 ≤ k; 48 ≤ k; · · · ; k8 ≤ k.
⇒ 18 + 28 + · · ·+ k8 ≤ k8 + k8 + · · ·+ k8︸ ︷︷ ︸

k times

= k9.

Thus for c = 1 and n0 = 1 we have
∑k

i=1 i
8 = O(k9).

7. Prove that for some k ∈ N,
∑k

i=1 i
8 = Ω(k9). ⋆ ⋆ ⋆

Observe that
∑k

i=1 i
8 =

⌈k/2⌉−1∑
i=1

i8︸ ︷︷ ︸
I

+
k∑

i=⌈k/2⌉

i8

︸ ︷︷ ︸
II

.

In summation II, each term is at least
(
⌈k/2⌉

)8
. Further the number of terms in

summation II is k − ⌊k/2⌋ which is approximately k/2.

Hence,
∑k

i=1 i
8 ≥ k

2
·
(
⌈k
2
⌉
)8 ≥ k

2
·
(
k
2

)8
= k9

29
.

Thus for c = 2−9 and n0 = 1 we have
∑k

i=1 i
8 = Ω(k9).

8. Prove that n2 + 17n = n2 + o(n lnn). ⋆ ⋆ ⋆
To prove that n2 + 17n = n2 + o(n lnn) boils down to show that n = o(n lnn).
Observe that limn→∞

n
n lnn

= limn→∞
1

lnn
= 0. By definition, for c = 1 and n0 = 1 we

have n = o(n lnn). This completes the proof. qed

86



10.2 Problem Set 12 - Graphs-I (solutions)

To test command over basic definitions & notations

1. Consider a directed graph G. Prove that graph G being strongly connected implies
that G is weakly connected, and not the other way around.
Exercise.

2. Consider a directed graph G. Prove that graph G being a Null graph implies that G is
also an Empty graph. Provide a counter-example to show that the other way around
is not always true.
Exercise.

3. The general graph shown in the following figure(4) goes by the name of GraphBuster in
standard literature. Count and determine the cardinality of V and E in GraphBuster.

Figure 4: GraphBuster

GraphBuster has order order 13 with 21 edges.

4. A graph of order n is called complete, denoted byKn provided that each pair of distinct
vertices forms an edge. Show that a complete graph of order n has n(n− 1)/2 edges.
Number edges equals total posible ways to choose 2 vertices from the n vertices in kn,
i.e.,

(
n
2

)
= n(n−1)

2
. □

Problems of type ¬ (simple)

5. Let G be a general graph. Show that the sum of the degrees of all the vertices of G
is an even number, and consequently, the number of vertices of G with odd degree is
even.
Each edge in G contributes 2 to the overall sum of the degrees in G. Hence, sum of
all the degrees in G is 2e, where is the total number of edges in G. Clearly, 2e is even.
Further, let ee and eo be the number of vertices with even and odd degrees respectively.
eo is difference of two even numbers, hence it is even. □

6. If G is a simple graph of order n ≥ 3, such that for all pairs of distinct vertices x and
y in G that are not adjacent, we have deg(x)+ deg(y) ≥ n, then show that G must be
connected. ⋆
Proof by contradiction. Suppose that G is not connected. We then show that
G cannot satisfy the Ore property : ∀ pairs of distinct vertices x and y that are not
adjacent, deg(x)+deg(y) ≥ n. Since G is not connected, its vertices can be partitioned
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into two parts, U and W , in such a way that there are no edges joining a vertex in U
with a vertex in W . Let r be the number of vertices in U and let s be the number of
verticed in W . Then r + s = n, and each vertex in U has degree at most r − 1, and
each vertex in W has degree at most s − 1. Let x be any vertex in U and let y be
any vertex in W . Then x and y are not adjacent, but the sum of their degrees is, at
most, (r− 1)+ (s− 1) = r+ s− 2 = n− 2, and this contradicts the Ore property. We
conclude that if G satisfies the Ore property, then G must be connected. □

7. Let G be the graph such that elements of {1, 2, 3, · · · , 20} form its vertices. In G, two
vertices (integers) are joined by an edge if and only if their difference is an odd integer.
Show that G is a bipartite graph.
Let X = {k ∈ N | k = 1 mod 2; k ≤ 20} and Y = {k ∈ N | k = 0 mod 2; k ≤ 20}.
Observe that X and Y together is a bipartition for the graph G. □

8. Prove that if a multigraph G is bipartite, then each of its cycles has even length. Note
that: length of any cycle/path is the number of edges it is composed of.
G is a bipartite multigraph with bipartition X, Y . The vertices of a walk of G must
alternate between X and Y . Since a cycle is closed, this implies that a cycle contains
as many left vertices as it does right vertices and hence has even length. □

9. For a fixed n ∈ N, let Gn be the graph such that elements of {0, 1}n, the set of all
n−length binary strings, form its vertices. In Gn any two vertices are joined by an
edge if and only if they differ in exactly one 1-bit. Show that G is a bipartite graph. ⋆
Proof. Let n be a positive integer. We consider the set of all n−tuples of 0s and 1s as
the vertices of a graph Qn with two vertices joined by an edge if and only if they differ
in exactly one coordinate. If X = (x1, · · · , xn) and Y = (y1, · · · , yn) are joined by an
edge, then the number of 1s in Y is either one more or one less than the number of 1s
in X. Let X consist of those n−tuples that have an even number of 1s; let Y consist
of those n−tuples that have an odd number of 1s. Then two distinct vertices in X
differ in at least two coordinates and hence are not adjacent. Similarly, two distinct
vertices in Y are not adjacent. Hence, Qn is a bipartite graph with bipartition X, Y .

□

10. Prove that a graph of order n with at least

(n− 2)(n− 1)

2
+ 1

edges must be connected.
Proof by contradiction. Assume that G is a disconnected graph of order n such
that the number of edges is at least (n−2)(n−1)

2
+ 1. WLOG, say there are only two

components in G such that one component is a singleton vertex and the other is of
order n − 1. It follows that, the non-trivial component can have (n−1)(n−2)

2
edges at

max whenever it is complete. Observe that, in that case the number of edges that
G would have is (n−1)(n−2)

2
, which is a contradiction to the primal assumption of our

proof. Therefore, G is connected. □

11. Prove that a graph of order n with every vertex having degree at least n
2
must be

connected.
Proof by contradiction. We borrow the construction/set-up of a graph G exactly
from the previous proof. Observe that, once again the non-trivial component would
have a degree (n− 2)/2 at max, which is lesser than n/2. Hence, a contradiction. □
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12. In a simple graph if two vertices x and y are joined by a path then, show that they
are also joined by a simple path.
Exercise.
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10.3 Problem Set 13 - Graphs-II (solutions)

Problems of type (simple)

1. The two graphs shown below in figure (5) have the same number of vertices and edges.
Prove that despite these they are not isomorphic.

Figure 5: Sample graphs 01

deg(b) = 1 in the first graph, but is no vertex in the second graph with this property.

2. Consider the two graphs shown below in figure (6), where both the graphs have same
degree sequence (3, 3, 3, 3, 3, 3). Show that despite this, they are not isomorphic.

Figure 6: Sample graphs 02

Note that (a, c, e) forms a ‘triangle’ in that any two pairs are adjacent. There is no
such triangle in the second graph, so these graphs are not isomorphic.

3. A graph has 26 vertices and 58 edges. There are five vertices of degree 4, six vertices
of degree 5, and seven vertices of degree 6. If the remaining vertices all have the same
degree, what is this degree?
There are 26− 5− 6− 7 = 8 vertices of degree x. Applying Euler’s Theorem, we get
5 · 4 + 6 · 5 + 7 · 6 + 8 · x = 2 · 58. On solving, x = 3.

4. A graph has 24 vertices and 30 edges. It has five vertices of degree 4, seven pendant
vertices, and seven vertices of degree 2. All other vertices have degree 3 or 4. How
many vertices of degree 4 are there?
Let x be the number of vertices of degree 3, and y the number of vertices of degree 4.
The order of the graph is 24 therefore : 5+ 7+ 7+ x+ y = 24. After applying Euler’s
Theorem, we get 5 · 4 + 7 · 1 + 7 · 2 + 3 · x+ 4 · y = 3 · 30. On solving, y = 4.

Problems of type ¬ (simple)

5. Prove or Disprove, whether a bipartite graph can have K3 as its subgraph?
A bipartite graph cannot have a K3 subgraph, as there would be three mutually
adjacent vertices in the graph, requiring three different partite sets, contradicting that
the graph is bipartite.
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6. Let d0(G) be the least among the degrees of the vertices of an n−vertex graph G.
Prove that if d0(G) ≥ (n− 1)/2, then the graph G is connected. ⋆
Proof by contradiction : Assume that graph G is not connected and d0(G) ≥
(n − 1)/2. Let one component have m vertices, where 1 ≤ m ≤ ⌊n/2⌋. Then the
maximum degree of any vertex in that component is at most m − 1, since it is only
connected to vertices within that component. Therefore, at least one vertex in G has
degree ⌊n/2⌋− 1 < (n− 1)/2. This contradicts the fact that d0(G) ≥ (n− 1)/2, hence
G is connected.

7. Prove that a graph G with v vertices and e edges has at least v− e connected compo-
nents. [Hint : use induction on e.]
BASE CASE : e = 0; then each of the v vertices of G are connected components in
their own right. Hence, number of connected components = v − 0.
INDUCTIVE HYPOTHESIS : e = k, the graph G of order v has v−k connected
components.
INDUCTIVE STEP : e = k + 1; consider the Graph G from the IH, where all k
edges have been encompases by its connected components. Hence, for the additional
edge, we will have to joing two connected components. It follows, that due to the
additional edge there will be a decrease in the number of connected components, so
the resultant graph has v − k − 1 = v − (k + 1) connected components.

8. Prove that a connected graph G with n vertices contains at least n− 1 edges. [Hint :
the proof might be an application of the result in the previous question, when proved!]
Any connected graph G, trivially has 1 connected component. Hence the proof is a
direct application of the result in question 7.

9. If G is a connected graph with v vertices and e edges, then v ≤ e+ 1.
Proof by contradiction : Let us assume that graph G is a connected graph of order
v with e edges, such that v > e + 1. Since G is connected, there must be at least
one edge corresponding to each vertex. Considering this, v > e + 1 constraint is a
contradiction to G being connected. Hence v ≤ e+ 1.

10. If G is a connected graph, then removing an edge from a cycle will not make G a
disconnect graph. ⋆
Arbitrarily select a vertices vi, vj, part of a cycle in G. Any cycle starting from and
ending on a vertex vi, which includes vj is of the form :

vi − vk1 , vk1 − vk2 , vk2 − vk3 , · · · , vkm − vj, vj − vln , · · · , vl1 − vi,

such that [vi−vk1 , · · · , vkm−vj] and [vj−vln , · · · , vl1−vi] are two distinct simple paths
between the vertices v0 and vn. Thus removing an edge from the cycle is equivalent
to remove an edge from either of the two simple paths. The other one remains intact
connecting v0 and vn. This completes the proof. □
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10.4 Problem Set 14 - Graphs-III (solutions)

1. A graph G = (V,E) is called k-regular if deg(v) = k for all v ∈ V . A graph is called
regular if it is k-regular for some k. Give example of a regular bipartite graph.
All complete bipartite graphs are regular, whenever the order of the bipartitions are
equal. Food for thought: can be there other examples?

2. Prove that every induced subgraph of a complete graph is complete.
A complete graph Kn is a graph where every pair of distinct vertices is connected by
an edge. An induced subgraph H of a graph G is formed by taking a subset of vertices
V (H) ⊆ V (G), and including all edges from G that exist between these vertices.

Let G = Kn be a complete graph with vertex set V . Let H be an induced subgraph
of G, formed by a subset V (H) ⊆ V . By the definition of an induced subgraph:

For every pair of vertices u, v ∈ V (H), the edge uv ∈ E(H) if and only if
uv ∈ E(G).

Since G is complete, every pair u, v ∈ V (G) is connected by an edge in G. Therefore,
for any u, v ∈ V (H), the edge uv ∈ E(G), and thus it must also be in E(H). Hence,
every pair of distinct vertices in H is connected, and so H is a complete graph. □

3. Prove that every subgraph of a bipartite graph is bipartite.
Proof by contradiction. Let G be a bipartite graph with bipartitions X, Y . We
consider a subgraph G1 ⊆ G, such that G1 is not complete. We borrow the result that
subgraph of a bipartite graph is again bipartite. It follows that, ∃ vx ∈ X and vy ∈ Y
which are not adjacent. But this is a contradiction as G is assumed to be complete.
This is forms good-enough sketch of the complete proof. □

4. If two graphs G1 and G2 are isomorphic then their degree sequences are the same.
Suppose G1 = (V1, E1) and G2 = (V2, E2) are isomorphic graphs. Let f : V1 → V2 be
the isomorphism between them. Since f preserves adjacency, the number of neighbors
of any vertex v ∈ V1 is equal to the number of neighbors of f(v) ∈ V2. That is,

degG1
(v) = degG2

(f(v)).

Thus, for every vertex in G1, there exists a corresponding vertex in G2 with the same
degree. Therefore, the set (or multiset) of degrees in G1 is identical to that in G2.
Therefore, the degree sequences of G1 and G2 are the same. □

5. What is the sum of the entries in a row of the adjacency matrix of an undirected
simple graph?
Degree of the vertex corresponding to that row.

6. Let u, v, and w be three distinct vertices in a graph. There is a path between u and v
and also there is a path between v and w. Prove that there is a path between u and
w.
Let p1 be the path connecting u and v; p2 be the path connecting v and w. Then the
resultant path p1 ∪ p2 connects u and w. □

7. Suppose (d1, . . . , dn) be a degree sequence of a tree. Determine
∑n

i=1 di.
Exercise.
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8. Show that the number of vertices n in a full binary tree is always odd.
A binary tree is a tree in which every node has at most two children. For a full
binary tree (i.e., every internal node has exactly two children), there is a well-known
relationship, n = 2i+ 1 where i is the number of internal nodes.

Each internal node has exactly 2 children. So, the total number of children is 2i. Each
node, except the root, is a child of some node. Therefore, the total number of nodes
n is : n = internal nodes + leaves = i+ (i+ 1) = 2i+ 1. Since 2i+ 1 is always odd for
any integer i, we conclude that the number of vertices n in a full binary tree is always
odd. □

9. Let p be the number of pendant vertices in a binary tree T with n vertices. Show that

p =
n+ 1

2
.

Exercise.

10. Let k ∈ N be the height of a binary tree T . Determine the maximum number of leaf
nodes of T .
Claim: The number of nodes at level k of a full binary tree is 2k, where root node is
present at level 0. Prove the claim using induction. Hence, the maximum number of
leaf nodes of T , whenever k ∈ N is the height of a binary tree T equals to 2k. □

11. Consider the graph defined by the adjacency matrix provided below.

0 1 1 1 1 0 0 0
0 1 1 0 1 0 0

0 0 1 0 1 0
0 0 1 0 1

0 0 1 1
0 1 1

0 1
0


(a) Determine if it is an Euler graph.

Exercise.

(b) Determine if it admits a Hamiltonian circuit.
Exercise.

(c) Give a spanning tree of this graph.
Exercise.
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10.5 Problem Set 19 - Generating Functions (solutions)

1. Given the following sequences, determine the corresponding generating function as a
summation and in closed form (as a formula).

(a) 1, 2, 3, 4, . . .

(b) 5, 4, 3, 0, 0, . . .

(c) 1,−1, 1,−1, 1,−1, . . .

(d)
(
10
10

)
,
(
11
10

)
,
(
12
10

)
,
(
13
10

)
, . . .

(e)
(
10
10

)
,−
(
11
10

)
,
(
12
10

)
,−
(
13
10

)
, . . .

(f) 1, 0, 1, 0, 1, . . .

(g) 1,−2, 4,−8, 16,−32, 0, 0, 0, . . .

The pattern for both this question and the one below it is, starting from 0, the ith

term in the sequence is the coefficient of xi.

(a) 1 + 2x+ 3x2 + 4x3 + · · ·+ nxn+1 + · · · =
∑∞

k=0

(
k+1
1

)
xk = 1

(1−x)2

(b) 5 + 4x+ 3x2 =
∑2

k=0

(
5−k
1

)
xk.

(c) 1− x+ x2 − x3 + x4 − x5 + · · ·+ (−1)nxn + · · · =
∑∞

k=0(−x)k =
1

1+x
.

(d)
(
10
10

)
+
(
11
10

)
x+

(
12
10

)
x2 + · · · =

∑∞
k=0 x

k
(
10+k
10

)
= 1

(1−x)11

(e)
(
10
10

)
−
(
11
10

)
x+

(
12
10

)
x2 −

(
13
10

)
· · · =

∑∞
k=0(−x)k

(
10+k
10

)
= 1

(1+x)11

(f) 1 + x2 + x4 + · · · =
∑∞

k=0 x
2k = 1

1−x2

(g) 1− 2x+ 4x2 − 8x3 + 16x4 − 32x5 =
∑5

k=0(−2x)k = 1−(−2x)6

1−(−2x)
= 1−64x6

1+2x

2. Given the following generating functions, determine the sequence that represents it.

(a) f(x) = 0

(b) f(x) = x

(c) f(x) = 4 + 3x− 10x2 + 55x3

(d) f(x) = (3x− 4)3

(e) f(x) = 3x
1−x

(f) f(x) = 1
(1−3x)2

(a) 0, 0, 0, 0, . . . .

(b) 0, 1, 0, 0, 0, . . . .

(c) 4, 3,−10, 55.

(d) −64, 144,−108, 27. Since,

(3x− 4)3 = 27x3 − 108x2 + 144x− 64.

(e) 0, 3, 3, 3, 3, . . . . Since,

3x

1− x
= 3x ·

∞∑
k=0

xk = 3x(1) + 3x(x) + 3x(x2) + . . . .

(f) 1, 6, 27, 108, . . . . Since,

1

(1− 3x)2
=

∞∑
k=0

Ç
k + 1

1

å
(3x)k =

∞∑
k=0

(k + 1)(3x)k.
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3. Determine the coefficient of the specified term in the expansion of the given function.

(a) x3 in 1
1−x

.

(b) x2 in 1
(1−2x)3

.

(c) x5 in (1−x5)
1−x

.

(d) x3 in 1
(1+3x)10

.

(a) 1. We know, 1
1−x

=
∑∞

r=0 x
r. Therefore x3 occurs when r = 3 which has a

coefficient of 1.

(b) 24. We know,

1

(1− x)n
=

∞∑
r=0

Ç
r + n− 1

n− 1

å
xr.

So we can determine that,

1

(1− 2x)3
=

∞∑
r=0

Ç
r + 3− 1

3− 1

å
(−2x)r =

∞∑
r=0

Ç
r + 2

2

å
(−2)rxr.

Thus the coefficient of x2 occurs when r = 2 which gives a coefficient 24.

(c) 0. We know,

1− xn+1

1− x
=

n∑
r=0

xr.

This gives n+1 = 5 hence n = 4. The form 1−x5

1−x
=
∑4

r=0 x
r = 1+x+x2+x3+x4.

Simply we notice that the coefficient of x5 in this expansion will be 0.

(d) 5940. We know,

1

(1 + x)n
=

∞∑
r=0

(−1)r
Ç
r + n− 1

n− 1

å
xr.

Therefore,

1

(1 + 3x)10
=

∞∑
r=0

(−1)r
Ç
r + 10− 1

10− 1

å
(3x)r =

∞∑
r=0

(−1)r
Ç
r + 9

9

å
3rxr.

Thus the coefficient of x3 occurs when r = 3 and is 5940.

4. In how many ways can 1000 identical pamphlets be distributed to five different coun-
selling centers, where pamphlets are put in stacks of 50, such that each center receives
at least 50 but no more than 500 pamphlets?
3246. We first notice that thinking of this problem in terms of stacks of pamphlets
rather than the pamphlets themselves reduces it to: “In how man ways can 1000

50
= 20

stacks be distributed to five different counselling centers such that each center receives
at least 50

50
= 1 but no more than 500

50
= 10 stacks?” The generating function that

represents this set up is,

g(x) = (x1 + x2 + · · ·+ x10)5,

and we are interested in determining the coefficient of x20. Alternatively, we can
identify the coefficient of x15 in, g′(x) = (1 + x + · · · + x9)5, which was obtained by
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factoring out an x. We now rewrite this using what we know about series,

g′(x) =

Å
1− x10

1− x

ã5
= (1− x10)5

Å
1

1− x

ã5
=

ÇÇ
5

0

å
−
Ç
5

1

å
x10 +

Ç
5

2

å
x20 −

Ç
5

3

å
x30 +

Ç
5

4

å
x40 −

Ç
5

5

å
x50
åÅ

1

(1− x)5

ã
= (1− 5x10 + 10x20 − 10x30 + 5x40 − x50) ·

∞∑
r=0

Ç
r + 5− 1

5− 1

å
xr

= (1− 5x10 + 10x20 − . . . ) ·
∞∑
r=0

Ç
r + 4

4

å
xr.

When this expression is expanded, we are interested in the coefficients of x when
r = 15, 5, which correspond to the coefficients of x15. When r = 15,

(
15+4
4

)
=
(
19
4

)
=

3 876. When r = 5,
(
5+4
4

)
=
(
9
4

)
= 126. Therefore the coefficient of x15 in g′(x) is

(1)
(
19
4

)
+ (−5)

(
9
4

)
= (1)3 876− 5(126) = 3 876− 630 = 3 246, which is the number of

ways these stacks of pamphlets can be distributed.

5. In how many ways can 20 identical balls be distributed between 3 distinct boxes such
that, ...

(a) ... there are at least two balls assigned to box?

(b) ... there are at least three, but no more than 10 balls assigned to each box?

(c) ... using the same condition as in part b, how many distributions are possible if
there were 25 balls instead of 20?

Exercise.

6. Determine the number of ways that USD 12 in loonies can be distributed between
a father’s three children so that the eldest gets at least four dollars, the middle and
youngest child are both guaranteed at least two dollars, but the youngest cannot
receive any more than USD 5 since he will spend it all on candy and rot his teeth.
14.
We represent the eldest child’s potential share of the money by x4 + x5 + x6 + . . . .
The middle child’s, x2 + x3 + x4 + . . . .
The youngest child’s, x2 + x3 + x4 + x5.
To determine the number of ways the loonies can be distributed, we are looking for
the coefficient of x12 in the product,

g(x) = (x4 + x5 + x6 + . . . )(x2 + x3 + x4 + . . . )(x2 + x3 + x4 + x5).

We can simplify g(x),

g(x) = (x4 + x5 + x6 + . . . )(x2 + x3 + x4 + . . . )(x2 + x3 + x4 + x5)

= x4(1 + x+ x2 + . . . )x2(1 + x+ x2 + . . . )x2(1 + x+ x2 + x3)

= x8(1 + x+ x2 + . . . )2(1 + x+ x2 + x3).
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Alternatively we can reduce this problem to identifying the coefficient of x4 in,

g′(x) = (1 + x+ x2 + . . . )2(1 + x+ x2 + x3).

Using identities and some substitutions we rewrite g′(x) as,

g′(x) = (1 + x+ x2 + . . . )2(1 + x+ x2 + x3)

=

Å
1

1− x

ã2
· 1− x4

1− x

=
1

(1− x)2
· 1− x4

1− x

=
1− x4

(1− x)3

= (1− x4)
∞∑
r=0

Ç
r + 3− 1

3− 1

å
xr

= (1− x4)
∞∑
r=0

Ç
r + 2

2

å
xr.

The coefficient of x4 will occur when r = 0, 4. When r = 0,
(
0+3−1
3−1

)
=
(
2
2

)
= 1. When

r = 0, the coefficient from the sum is
(
0+2
2

)
=
(
2
2

)
= 1. When r = 4,

(
4+3−1
3−1

)
=
(
6
2

)
= 15.

When r = 4, the coefficient from the sum is
(
4+2
2

)
=
(
6
2

)
= 15. Putting this together,

there are 1 × (coeff for r = 4) − 1 × (coeff for r = 0) = 1(15) − 1(1) = 14 ways to
distribute the loonies. The coefficient of x4 will occur when r = 0, 4. When r = 0,(
0+3−1
3−1

)
= 1, when r = 4,

(
4+3−1
3−1

)
= 15. Putting this together, there are 15(1)−1 = 14

ways to distribute the loonies.

7. In how many ways can n balls be selected from a supply of pink, orange and black
balls such that the number of black balls selected must be even?
Hint: Partial fractions may come in handy.

1

8
+

1

4
(n+ 1) +

1

2
(n+ 2) +

1

8
(−1)n.

The expression, (1 + x + x2 + . . . ), will help keep track of the pink and orange balls,
while the expression, (1 + x2 + x4 + . . . ), will keep track of the even black balls. We
are interested in determining the coefficient of xn in the product,

g(x) = (1 + x+ x2 + x3 + . . . )2(1 + x2 + x4 + x6 + . . . ).

From our identities we see that,

g(x) =

ï
1

1− x

ò2
· 1

1− x2

=
1

(1− x)2
· 1

1− x2

=
1

(1− x)2(1− x)(1 + x)

=
1

(1− x)3(1 + x)
.
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We need a different, simpler, way to express g(x), so we use a partial fraction expansion,

g(x) =
−1

(x− 1)3(x+ 1)
=

A

x− 1
+

B

(x− 1)2
+

C

(x− 1)3
+

D

x+ 1
.

Multiplying both the left and right hand sides by the common denominator, (x −
1)3(x+ 1), we obtain,

−1 = A(x− 1)2(x+ 1) +B(x− 1)(x+ 1) + C(x+ 1) +D(x− 1)3.

Expanding and applying the binomial theorem where necessary we see that,

−1 = A(x3 − x2 − x+ 1) +B(x2 − 1) + C(x+ 1) +D(x3 − 3x2 + 3x− 1)

= Ax3 − Ax2 − Ax+ A+Bx2 −B + Cx+ C +Dx3 − 3Dx2 + 3Dx−D

= (A+D)x3 + (−A+B − 3D)x2 + (−A+ C + 3D)x+ (A−B + C −D).

We know the coefficient of x3, x2, x are 0, so we match the coefficients with each other
and solve for the unknowns:

A+D = 0

−A+B − 3D = 0

−A+ C + 3D = 0

A−B + C −D = −1.

We must now solve this system of equations. Clearly from the first equation, D = −A.
Plugging this into the second equation,

−A+B − 3(−A) = −A+B + 3A = B + 2A = 0,

which implies that B = −2A. Plugging these into the fourth equation we obtain,

A− (−2A) + C − (−A) = A+ 2A+ C + A = 4A+ C = −1,

which implies that C = −1 − 4A. Finally we can plug everything into the third
equation and solve for A,

−A+ (−1− 4A) + 3(−A) = −A− 1− 4A− 3A = −8A− 1 = 0.

Certainly from this, A = −1
8
. We further see that D = 1

8
, B = −2 · −1

8
= 1

4
and

C = −1− 4 · −1
8
= −1 + 1

2
= −1

2
. Hence,

g(x) =
−1

8(x− 1)
+

1

4((x− 1)2)
+

−1

2((x− 1)3)
+

1

8(x+ 1)

=
1

8(1− x)
+

1

4(1− x)2
+

1

2(1− x)3
+

1

8(1 + x)
.

We may now use our identities to express g(x) in terms of sums,

g(x) =
1

8

∞∑
r=0

xr +
1

4

∞∑
r=0

Ç
r + 2− 1

2− 1

å
xr +

1

2

∞∑
r=0

Ç
r + 3− 1

3− 1

å
xr +

1

8

∞∑
r=0

(−1)rxr

=
1

8

∞∑
r=0

xr +
1

4

∞∑
r=0

Ç
r + 1

1

å
xr +

1

2

∞∑
r=0

Ç
r + 2

2

å
xr +

1

8

∞∑
r=0

(−1)rxr.
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The coefficient of xn occurs when n = r, hence there are,

1

8
+

1

4

Ç
n+ 1

1

å
+

1

2

Ç
n+ 2

2

å
+

1

8
(−1)n,

ways to select n balls.

8. A restaurant just closed for the night and they had an extra 12 orders of fries and
16 mini-desserts left over. The restaurant manager decides to split this left over food
between the four employees closing that night. How can the manager do this so that
the head chef receives at least one order of fries and exactly three mini-desserts, while
the three other closing-staff are guaranteed at least two orders of fries but less than 5
desserts?
Exercise.

9. Use generating functions to determine the number of four-element subsets of the set
A, given by A := {1, 2, . . . , 15} that contain no consecutive integers.
Exercise.

10. A student is picking out a handful of gummy bears from a large container. There
are red, yellow, and green gummy bears in the container. The student wishes to pick
out an even number of red gummy bears, an odd number that is at least 3 of yellow
gummy bears, and either 4 or 6 green gummy bears.

(a) Determine the appropriate generating function that models this situation.

(b) How many ways can the student pick out gummy bears if they pick out:

i. 15? ii. 22?

Exercise.

11. Someone buys a chocolate bar and receives 50 cents in change. Create a generating
function that could determine the number of ways they could receive their change in
any combination of pennies, nickles, dimes, and quarters? The coefficient of which
term will give the desired solution?
Note: You are not being asked to determine how many ways this is possible.
We are interested in determining the coefficient of x50 in the product,

(1 + x+ x2 + . . . )(1 + x5 + x10 + x15 + . . . )(1 + x10 + x20 + . . . )(1 + x25 + x50 + . . . ).

The first term of the product represents the pennies used, the second term the nickels
used, third the dimes used, and the last term stands in for the quarters. We can
rewrite this product as,

1

1− x
· 1

1− x5
· 1

1− x10
· 1

1− x25
,

which is our desired generating function.
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12. A deck of cards has 52 cards in total. Half of the deck is red and half is black. A
quarter of the deck has the symbol hearts, a quarter has the symbol diamonds, a
quarter has the symbol spades, and a quarter has the symbol clubs. How many ways
are there to pick 15 cards if:

(a) You wish to pick an even number of black cards and an odd number of red cards?

(b) You wish to pick at least two of each symbol, but no more than 5 hearts and 6
spades?

Exercise.

13. Three students are running for student body president: Krishna, and Jamar, and
Bonnie. Find the generating function used to determine the possible distribution of n
students’ votes

(a) with no further restrictions?

(b) if every student running votes for themselves?

(a) Each student can receive any number of votes, so the generating function would
be as follows.

g(x) = (1 + x+ x2 + x3 + . . . )3.

To find the number of distributions of n votes, the above generating function
would be used to find the coefficient of xn.

(b) If every student votes for themselves then we know that each student receives at
least one vote. Thus the generating function is:

g(x) = (x+ x2 + x3 + . . . )3 = x3(1 + x+ x2 + x3 + . . . )3.

Similar to in (a), to find the number of distributions of n votes, the above gener-
ating function would be used to find the coefficient of xn.

14. How many ways are there to obtain a sum of 7 if 2 distinct 6-sided dice, having faces
numbered 1, 2, 3, 4, 5, 6 are thrown?
If two distinct dice are rolled, then we can form the following generating function:

g(x) = (x+ x2 + x3 + x4 + x5 + x6)2.

If we are looking to obtain a sum of 7, then we are looking to find the coefficient of x7

in g(x). We can do so by expanding g(x):

g(x) = (x+ x2 + x3 + x4 + x5 + x6)2

= x2 + 2x3 + 3x4 + 4x5 + 5x6 + 6x7 + 5x8 + 4x9 + 3x10 + 2x11 + x12

The coefficient of x7 is 6 and thus there are 6 possible ways to throw two dice in order
to obtain a sum of 7.
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Notes : Course Review

1. This section is under construction and the ap-
propriate content shall be made available after
the formal termination of the course.

2. Stay tuned!
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